You are currently looking at version 1.5 of this notebook. To download notebooks and datafiles, as well as get help on Jupyter notebooks in the Coursera platform, visit the Jupyter Notebook FAQ course resource.
This assignment requires more individual learning then the last one did - you are encouraged to check out the pandas documentation to find functions or methods you might not have used yet, or ask questions on Stack Overflow and tag them as pandas and python related. And of course, the discussion forums are open for interaction with your peers and the course staff.
Load the energy data from the file Energy Indicators.xls
, which is a list of indicators of energy supply and renewable electricity production from the United Nations for the year 2013, and should be put into a DataFrame with the variable name of energy.
Keep in mind that this is an Excel file, and not a comma separated values file. Also, make sure to exclude the footer and header information from the datafile. The first two columns are unneccessary, so you should get rid of them, and you should change the column labels so that the columns are:
['Country', 'Energy Supply', 'Energy Supply per Capita', '% Renewable']
Convert Energy Supply
to gigajoules (there are 1,000,000 gigajoules in a petajoule). For all countries which have missing data (e.g. data with "...") make sure this is reflected as np.NaN
values.
Rename the following list of countries (for use in later questions):
"Republic of Korea": "South Korea",
"United States of America": "United States",
"United Kingdom of Great Britain and Northern Ireland": "United Kingdom",
"China, Hong Kong Special Administrative Region": "Hong Kong"
There are also several countries with numbers and/or parenthesis in their name. Be sure to remove these,
e.g.
'Bolivia (Plurinational State of)'
should be 'Bolivia'
,
'Switzerland17'
should be 'Switzerland'
.
Next, load the GDP data from the file world_bank.csv
, which is a csv containing countries' GDP from 1960 to 2015 from World Bank. Call this DataFrame GDP.
Make sure to skip the header, and rename the following list of countries:
"Korea, Rep.": "South Korea",
"Iran, Islamic Rep.": "Iran",
"Hong Kong SAR, China": "Hong Kong"
Finally, load the Sciamgo Journal and Country Rank data for Energy Engineering and Power Technology from the file scimagojr-3.xlsx
, which ranks countries based on their journal contributions in the aforementioned area. Call this DataFrame ScimEn.
Join the three datasets: GDP, Energy, and ScimEn into a new dataset (using the intersection of country names). Use only the last 10 years (2006-2015) of GDP data and only the top 15 countries by Scimagojr 'Rank' (Rank 1 through 15).
The index of this DataFrame should be the name of the country, and the columns should be ['Rank', 'Documents', 'Citable documents', 'Citations', 'Self-citations', 'Citations per document', 'H index', 'Energy Supply', 'Energy Supply per Capita', '% Renewable', '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015'].
This function should return a DataFrame with 20 columns and 15 entries.
import pandas as pd
import numpy as np
def answer_one():
# skipfooter: Rows at the end to skip (0-indexed)
energy = pd.read_excel('Energy Indicators.xls', skiprows=17, skipfooter=38)
# get rid of the 2 first columns
cols = ['Unnamed: 2', 'Petajoules', 'Gigajoules', '%']
energy = energy[cols]
energy.columns = ['Country', 'Energy Supply', 'Energy Supply per Capita', '% Renewable']
# For all countries which have missing data (e.g. data with "...")
# make sure this is reflected as np.NaN values.
energy = energy.replace('...', np.nan)
# Convert Energy Supply to gigajoules (there are 1,000,000 gigajoules in a petajoule)
energy['Energy Supply'] = energy['Energy Supply'] * 1000000
# Remove the numbers in the country name
energy['Country'] = energy['Country'].str.replace(r"[0-9]","")
energy['Country'] = energy['Country'].replace({
'China, Hong Kong Special Administrative Region':'Hong Kong',
'United Kingdom of Great Britain and Northern Ireland':'United Kingdom',
'Republic of Korea':'South Korea',
'United States of America':'United States',
'Iran (Islamic Republic of)':'Iran',
'Bolivia (Plurinational State of)':'Bolivia'})
# This removed all instances of where there were parentheses with words in them
energy['Country'] = energy['Country'].str.replace(r" \(.*\)","")
GDP = pd.read_csv("world_bank.csv", skiprows=4)
GDP['Country Name'] = GDP['Country Name'].replace({'Korea, Rep.' : 'South Korea',
'Iran, Islamic Rep.' : 'Iran',
'Hong Kong SAR, China' : 'Hong Kong'})
ScimEn = pd.read_excel('scimagojr-3.xlsx')
# Join the three datasets: GDP, Energy, and ScimEn into a new dataset
# (using the intersection of country names).
# Use only the last 10 years (2006-2015) of GDP data and only the top 15 countries
# by Scimagojr 'Rank' (Rank 1 through 15).
cols_GDP = ['Country Name','2006','2007','2008','2009','2010','2011','2012','2013','2014','2015']
GDP_merge = GDP[cols_GDP]
GDP_merge.columns = ['Country','2006','2007','2008','2009','2010','2011','2012','2013','2014','2015']
ScimEn_merge = ScimEn[:15]
df0 = pd.merge(ScimEn_merge, energy, how='inner', left_on='Country', right_on='Country')
df = pd.merge(df0, GDP_merge, how='inner', left_on='Country', right_on='Country')
# The index of this DataFrame should be the name of the country,
# and the columns should be ['Rank', 'Documents', 'Citable documents', 'Citations', 'Self-citations',
# 'Citations per document', 'H index', 'Energy Supply', 'Energy Supply per Capita',
# '% Renewable', '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015'].
df = df.set_index('Country')
columns = ['Rank', 'Documents', 'Citable documents', 'Citations', 'Self-citations',
'Citations per document', 'H index', 'Energy Supply', 'Energy Supply per Capita',
'% Renewable', '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015']
df = df[columns]
return df
answer_one()
Rank | Documents | Citable documents | Citations | Self-citations | Citations per document | H index | Energy Supply | Energy Supply per Capita | % Renewable | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Country | ||||||||||||||||||||
China | 1 | 127050 | 126767 | 597237 | 411683 | 4.70 | 138 | 1.271910e+11 | 93.0 | 19.754910 | 3.992331e+12 | 4.559041e+12 | 4.997775e+12 | 5.459247e+12 | 6.039659e+12 | 6.612490e+12 | 7.124978e+12 | 7.672448e+12 | 8.230121e+12 | 8.797999e+12 |
United States | 2 | 96661 | 94747 | 792274 | 265436 | 8.20 | 230 | 9.083800e+10 | 286.0 | 11.570980 | 1.479230e+13 | 1.505540e+13 | 1.501149e+13 | 1.459484e+13 | 1.496437e+13 | 1.520402e+13 | 1.554216e+13 | 1.577367e+13 | 1.615662e+13 | 1.654857e+13 |
Japan | 3 | 30504 | 30287 | 223024 | 61554 | 7.31 | 134 | 1.898400e+10 | 149.0 | 10.232820 | 5.496542e+12 | 5.617036e+12 | 5.558527e+12 | 5.251308e+12 | 5.498718e+12 | 5.473738e+12 | 5.569102e+12 | 5.644659e+12 | 5.642884e+12 | 5.669563e+12 |
United Kingdom | 4 | 20944 | 20357 | 206091 | 37874 | 9.84 | 139 | 7.920000e+09 | 124.0 | 10.600470 | 2.419631e+12 | 2.482203e+12 | 2.470614e+12 | 2.367048e+12 | 2.403504e+12 | 2.450911e+12 | 2.479809e+12 | 2.533370e+12 | 2.605643e+12 | 2.666333e+12 |
Russian Federation | 5 | 18534 | 18301 | 34266 | 12422 | 1.85 | 57 | 3.070900e+10 | 214.0 | 17.288680 | 1.385793e+12 | 1.504071e+12 | 1.583004e+12 | 1.459199e+12 | 1.524917e+12 | 1.589943e+12 | 1.645876e+12 | 1.666934e+12 | 1.678709e+12 | 1.616149e+12 |
Canada | 6 | 17899 | 17620 | 215003 | 40930 | 12.01 | 149 | 1.043100e+10 | 296.0 | 61.945430 | 1.564469e+12 | 1.596740e+12 | 1.612713e+12 | 1.565145e+12 | 1.613406e+12 | 1.664087e+12 | 1.693133e+12 | 1.730688e+12 | 1.773486e+12 | 1.792609e+12 |
Germany | 7 | 17027 | 16831 | 140566 | 27426 | 8.26 | 126 | 1.326100e+10 | 165.0 | 17.901530 | 3.332891e+12 | 3.441561e+12 | 3.478809e+12 | 3.283340e+12 | 3.417298e+12 | 3.542371e+12 | 3.556724e+12 | 3.567317e+12 | 3.624386e+12 | 3.685556e+12 |
India | 8 | 15005 | 14841 | 128763 | 37209 | 8.58 | 115 | 3.319500e+10 | 26.0 | 14.969080 | 1.265894e+12 | 1.374865e+12 | 1.428361e+12 | 1.549483e+12 | 1.708459e+12 | 1.821872e+12 | 1.924235e+12 | 2.051982e+12 | 2.200617e+12 | 2.367206e+12 |
France | 9 | 13153 | 12973 | 130632 | 28601 | 9.93 | 114 | 1.059700e+10 | 166.0 | 17.020280 | 2.607840e+12 | 2.669424e+12 | 2.674637e+12 | 2.595967e+12 | 2.646995e+12 | 2.702032e+12 | 2.706968e+12 | 2.722567e+12 | 2.729632e+12 | 2.761185e+12 |
South Korea | 10 | 11983 | 11923 | 114675 | 22595 | 9.57 | 104 | 1.100700e+10 | 221.0 | 2.279353 | 9.410199e+11 | 9.924316e+11 | 1.020510e+12 | 1.027730e+12 | 1.094499e+12 | 1.134796e+12 | 1.160809e+12 | 1.194429e+12 | 1.234340e+12 | 1.266580e+12 |
Italy | 11 | 10964 | 10794 | 111850 | 26661 | 10.20 | 106 | 6.530000e+09 | 109.0 | 33.667230 | 2.202170e+12 | 2.234627e+12 | 2.211154e+12 | 2.089938e+12 | 2.125185e+12 | 2.137439e+12 | 2.077184e+12 | 2.040871e+12 | 2.033868e+12 | 2.049316e+12 |
Spain | 12 | 9428 | 9330 | 123336 | 23964 | 13.08 | 115 | 4.923000e+09 | 106.0 | 37.968590 | 1.414823e+12 | 1.468146e+12 | 1.484530e+12 | 1.431475e+12 | 1.431673e+12 | 1.417355e+12 | 1.380216e+12 | 1.357139e+12 | 1.375605e+12 | 1.419821e+12 |
Iran | 13 | 8896 | 8819 | 57470 | 19125 | 6.46 | 72 | 9.172000e+09 | 119.0 | 5.707721 | 3.895523e+11 | 4.250646e+11 | 4.289909e+11 | 4.389208e+11 | 4.677902e+11 | 4.853309e+11 | 4.532569e+11 | 4.445926e+11 | 4.639027e+11 | NaN |
Australia | 14 | 8831 | 8725 | 90765 | 15606 | 10.28 | 107 | 5.386000e+09 | 231.0 | 11.810810 | 1.021939e+12 | 1.060340e+12 | 1.099644e+12 | 1.119654e+12 | 1.142251e+12 | 1.169431e+12 | 1.211913e+12 | 1.241484e+12 | 1.272520e+12 | 1.301251e+12 |
Brazil | 15 | 8668 | 8596 | 60702 | 14396 | 7.00 | 86 | 1.214900e+10 | 59.0 | 69.648030 | 1.845080e+12 | 1.957118e+12 | 2.056809e+12 | 2.054215e+12 | 2.208872e+12 | 2.295245e+12 | 2.339209e+12 | 2.409740e+12 | 2.412231e+12 | 2.319423e+12 |
The previous question joined three datasets then reduced this to just the top 15 entries. When you joined the datasets, but before you reduced this to the top 15 items, how many entries did you lose?
This function should return a single number.
%%HTML
<svg width="800" height="300">
<circle cx="150" cy="180" r="80" fill-opacity="0.2" stroke="black" stroke-width="2" fill="blue" />
<circle cx="200" cy="100" r="80" fill-opacity="0.2" stroke="black" stroke-width="2" fill="red" />
<circle cx="100" cy="100" r="80" fill-opacity="0.2" stroke="black" stroke-width="2" fill="green" />
<line x1="150" y1="125" x2="300" y2="150" stroke="black" stroke-width="2" fill="black" stroke-dasharray="5,3"/>
<text x="300" y="165" font-family="Verdana" font-size="35">Everything but this!</text>
</svg>
def answer_two():
# skipfooter: Rows at the end to skip (0-indexed)
energy = pd.read_excel('Energy Indicators.xls', skiprows=17, skipfooter=38)
# get rid of the 2 first columns
cols = ['Unnamed: 2', 'Petajoules', 'Gigajoules', '%']
energy = energy[cols]
energy.columns = ['Country', 'Energy Supply', 'Energy Supply per Capita', '% Renewable']
# For all countries which have missing data (e.g. data with "...")
# make sure this is reflected as np.NaN values.
energy = energy.replace('...', np.nan)
# Convert Energy Supply to gigajoules (there are 1,000,000 gigajoules in a petajoule)
energy['Energy Supply'] = energy['Energy Supply'] * 1000000
energy['Country'] = energy['Country'].str.replace(r"[0-9]","")
energy['Country'] = energy['Country'].replace({
'China, Hong Kong Special Administrative Region':'Hong Kong',
'United Kingdom of Great Britain and Northern Ireland':'United Kingdom',
'Republic of Korea':'South Korea',
'United States of America':'United States',
'Iran (Islamic Republic of)':'Iran',
'Bolivia (Plurinational State of)':'Bolivia'})
# This removed all instances of where there were parentheses with words in them
energy['Country'] = energy['Country'].str.replace(r" \(.*\)","")
GDP = pd.read_csv("world_bank.csv", skiprows=4)
GDP['Country Name'] = GDP['Country Name'].replace({'Korea, Rep.' : 'South Korea',
'Iran, Islamic Rep.' : 'Iran',
'Hong Kong SAR, China' : 'Hong Kong'})
ScimEn = pd.read_excel('scimagojr-3.xlsx')
df_outer0 = pd.merge(ScimEn, energy, how='outer', left_on='Country', right_on='Country')
df_outer = pd.merge(df_outer0, GDP, how='outer', left_on='Country', right_on='Country Name')
len_outer = len(df_outer)
# print(len_outer)
df_inner0 = pd.merge(ScimEn, energy, how='inner', left_on='Country', right_on='Country')
df_inner = pd.merge(df_inner0, GDP, how='inner', left_on='Country', right_on='Country Name')
len_inner = len(df_inner)
# print(len_inner)
return (len_outer)-(len_inner)
answer_two()
156
answer_one()
)¶What is the average GDP over the last 10 years for each country? (exclude missing values from this calculation.)
This function should return a Series named avgGDP
with 15 countries and their average GDP sorted in descending order.
import numpy as np
def mean_top15(row):
data = row[['2006','2007','2008','2009','2010','2011','2012','2013','2014','2015']]
return pd.Series({'mean': np.mean(data)})
def answer_three():
Top15 = answer_one()
avgGDP_notOrdered = Top15.apply(mean_top15, axis=1)
avgGDP = avgGDP_notOrdered.sort_values(by='mean', ascending = False)
return avgGDP
answer_three()
mean | |
---|---|
Country | |
United States | 1.536434e+13 |
China | 6.348609e+12 |
Japan | 5.542208e+12 |
Germany | 3.493025e+12 |
France | 2.681725e+12 |
United Kingdom | 2.487907e+12 |
Brazil | 2.189794e+12 |
Italy | 2.120175e+12 |
India | 1.769297e+12 |
Canada | 1.660647e+12 |
Russian Federation | 1.565459e+12 |
Spain | 1.418078e+12 |
Australia | 1.164043e+12 |
South Korea | 1.106715e+12 |
Iran | 4.441558e+11 |
def answer_three_alter():
import numpy as np
Top15 = answer_one()
columns = ['2006','2007','2008','2009','2010','2011','2012','2013','2014','2015']
Top15['Mean'] = Top15[columns].mean(axis=1)
avgGDP = Top15.sort_values(by = 'Mean', ascending = False)['Mean']
return avgGDP
answer_three_alter()
Country United States 1.536434e+13 China 6.348609e+12 Japan 5.542208e+12 Germany 3.493025e+12 France 2.681725e+12 United Kingdom 2.487907e+12 Brazil 2.189794e+12 Italy 2.120175e+12 India 1.769297e+12 Canada 1.660647e+12 Russian Federation 1.565459e+12 Spain 1.418078e+12 Australia 1.164043e+12 South Korea 1.106715e+12 Iran 4.441558e+11 Name: Mean, dtype: float64
By how much had the GDP changed over the 10 year span for the country with the 6th largest average GDP?
This function should return a single number.
def answer_four():
Top15 = answer_one()
avgGDP = answer_three()
Top6th_Country = avgGDP.index[5]
Top6th = Top15.loc[Top6th_Country]
"""
Or:
Top15 = Top15.reset_index()
Top6th = Top15[Top15['Country'] == Top6th_Country]
span = (Top6th['2015'] - Top6th['2006']).value[0]
"""
span = Top6th['2015'] - Top6th['2006']
return span
answer_four()
246702696075.3999
def answer_four_alter():
import pandas as pd
import numpy as np
Top15 = answer_one()
columns = ['2006','2007','2008','2009','2010','2011','2012','2013','2014','2015']
Top15['Mean'] = Top15[columns].mean(axis=1)
avgGDP = Top15.sort_values(by = 'Mean', ascending = False)['Mean']
target = avgGDP.index[5]
target_data = Top15.loc[target]
ans = target_data['2015'] - target_data['2006']
return ans
answer_four_alter()
246702696075.3999
What is the mean Energy Supply per Capita
?
This function should return a single number.
def answer_five():
Top15 = answer_one()
return Top15['Energy Supply per Capita'].mean(axis=0)
answer_five()
157.6
What country has the maximum % Renewable and what is the percentage?
This function should return a tuple with the name of the country and the percentage.
def answer_six():
Top15 = answer_one()
max_renewable = Top15['% Renewable'].max()
country = Top15[Top15['% Renewable'] == max_renewable].index[0]
# country = Top15[Top15['% Renewable'] == max_renewable].index
# print(country)
# Index(['Brazil'], dtype='object', name='Country')
return country, max_renewable
answer_six()
('Brazil', 69.64803)
Create a new column that is the ratio of Self-Citations to Total Citations. What is the maximum value for this new column, and what country has the highest ratio?
This function should return a tuple with the name of the country and the ratio.
def answer_seven():
Top15 = answer_one()
Top15['Ratio_Citations'] = Top15['Self-citations'] / Top15['Citations']
max_ratio = Top15['Ratio_Citations'].max()
country = Top15[Top15['Ratio_Citations'] == max_ratio].index[0]
return (country, max_ratio)
answer_seven()
('China', 0.6893126179389422)
Create a column that estimates the population using Energy Supply and Energy Supply per capita. What is the third most populous country according to this estimate?
This function should return a single string value.
def answer_eight():
Top15 = answer_one()
Top15['Estimated_Population'] = Top15['Energy Supply'] / Top15['Energy Supply per Capita']
population = Top15.sort_values(by='Estimated_Population', ascending=False)['Estimated_Population']
third_population = Top15[Top15['Estimated_Population'] == population.iloc[2]].index[0]
return third_population
answer_eight()
'United States'
def answer_eight_alter():
Top15 = answer_one()
columns = ['Energy Supply','Energy Supply per Capita']
target = Top15[columns]
target['Population'] = Top15['Energy Supply'] / Top15['Energy Supply per Capita']
ans = target.sort_values(by = 'Population', ascending = False).iloc[2].name
return ans
answer_eight_alter()
C:\Users\asus\Anaconda3\lib\site-packages\ipykernel_launcher.py:5: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy """
'United States'
Create a column that estimates the number of citable documents per person.
What is the correlation between the number of citable documents per capita and the energy supply per capita? Use the .corr()
method, (Pearson's correlation).
This function should return a single number.
(Optional: Use the built-in function plot9()
to visualize the relationship between Energy Supply per Capita vs. Citable docs per Capita)
def answer_nine():
Top15 = answer_one()
Top15['Estimated_Population'] = Top15['Energy Supply'] / Top15['Energy Supply per Capita']
Top15['Doc per Person'] = Top15['Citable documents'] / Top15['Estimated_Population']
# Top15['Corr_Citation_Energy'] = Top15['Energy Supply per Capita'].corr(Top15['Doc per Person'])
return Top15['Doc per Person'].corr(Top15['Energy Supply per Capita'])
answer_nine()
0.7940010435442946
def plot9():
import matplotlib as plt
%matplotlib inline
Top15 = answer_one()
Top15['PopEst'] = Top15['Energy Supply'] / Top15['Energy Supply per Capita']
Top15['Citable docs per Capita'] = Top15['Citable documents'] / Top15['PopEst']
Top15.plot(x='Citable docs per Capita', y='Energy Supply per Capita', kind='scatter', xlim=[0, 0.0006])
plot9() # Be sure to comment out plot9() before submitting the assignment!
Create a new column with a 1 if the country's % Renewable value is at or above the median for all countries in the top 15, and a 0 if the country's % Renewable value is below the median.
This function should return a series named HighRenew
whose index is the country name sorted in ascending order of rank.
import numpy as np
def isAboveMedian(row):
Top15 = answer_one()
median = np.nanmedian(Top15['% Renewable'])
data = row['% Renewable']
row['HighRenew'] = 1 if data >= median else 0
return pd.Series(row['HighRenew'])
def answer_ten():
Top15 = answer_one()
return Top15.apply(isAboveMedian, axis=1).sort_index()
answer_ten()
0 | |
---|---|
Country | |
Australia | 0.0 |
Brazil | 1.0 |
Canada | 1.0 |
China | 1.0 |
France | 1.0 |
Germany | 1.0 |
India | 0.0 |
Iran | 0.0 |
Italy | 1.0 |
Japan | 0.0 |
Russian Federation | 1.0 |
South Korea | 0.0 |
Spain | 1.0 |
United Kingdom | 0.0 |
United States | 0.0 |
def answer_ten_alter():
import pandas as pd
Top15 = answer_one()
med = Top15['% Renewable'].median()
Top15['HighRenew'] = [1 if x >= med else 0 for x in Top15['% Renewable']]
ans = Top15['HighRenew']
return pd.Series(ans).sort_index()
answer_ten_alter()
Country Australia 0 Brazil 1 Canada 1 China 1 France 1 Germany 1 India 0 Iran 0 Italy 1 Japan 0 Russian Federation 1 South Korea 0 Spain 1 United Kingdom 0 United States 0 Name: HighRenew, dtype: int64
Use the following dictionary to group the Countries by Continent, then create a dateframe that displays the sample size (the number of countries in each continent bin), and the sum, mean, and std deviation for the estimated population of each country.
ContinentDict = {'China':'Asia',
'United States':'North America',
'Japan':'Asia',
'United Kingdom':'Europe',
'Russian Federation':'Europe',
'Canada':'North America',
'Germany':'Europe',
'India':'Asia',
'France':'Europe',
'South Korea':'Asia',
'Italy':'Europe',
'Spain':'Europe',
'Iran':'Asia',
'Australia':'Australia',
'Brazil':'South America'}
This function should return a DataFrame with index named Continent ['Asia', 'Australia', 'Europe', 'North America', 'South America']
and columns ['size', 'sum', 'mean', 'std']
def answer_eleven():
Top15 = answer_one()
Top15 = Top15.reset_index()
Top15['Estimated Population'] = Top15['Energy Supply'] / Top15['Energy Supply per Capita']
ContinentDict = {'China':'Asia',
'United States':'North America',
'Japan':'Asia',
'United Kingdom':'Europe',
'Russian Federation':'Europe',
'Canada':'North America',
'Germany':'Europe',
'India':'Asia',
'France':'Europe',
'South Korea':'Asia',
'Italy':'Europe',
'Spain':'Europe',
'Iran':'Asia',
'Australia':'Australia',
'Brazil':'South America'}
Top15['Continent'] = [ContinentDict[country] for country in Top15['Country']]
Top15 = Top15.set_index('Continent')
summary = Top15.groupby(level=0)['Estimated Population'].agg({'sample size': np.size,
'sum': np.sum,
'average': np.nanmean,
'standard deviation' : np.nanstd})
return summary
answer_eleven()
C:\Users\asus\Anaconda3\lib\site-packages\ipykernel_launcher.py:27: FutureWarning: using a dict on a Series for aggregation is deprecated and will be removed in a future version. Use named aggregation instead. >>> grouper.agg(name_1=func_1, name_2=func_2)
sample size | sum | average | standard deviation | |
---|---|---|---|---|
Continent | ||||
Asia | 5.0 | 2.898666e+09 | 5.797333e+08 | 6.790979e+08 |
Australia | 1.0 | 2.331602e+07 | 2.331602e+07 | NaN |
Europe | 6.0 | 4.579297e+08 | 7.632161e+07 | 3.464767e+07 |
North America | 2.0 | 3.528552e+08 | 1.764276e+08 | 1.996696e+08 |
South America | 1.0 | 2.059153e+08 | 2.059153e+08 | NaN |
def answer_eleven_alter():
import pandas as pd
import numpy as np
ContinentDict = {'China':'Asia',
'United States':'North America',
'Japan':'Asia',
'United Kingdom':'Europe',
'Russian Federation':'Europe',
'Canada':'North America',
'Germany':'Europe',
'India':'Asia',
'France':'Europe',
'South Korea':'Asia',
'Italy':'Europe',
'Spain':'Europe',
'Iran':'Asia',
'Australia':'Australia',
'Brazil':'South America'}
Top15 = answer_one()
Top15['PopEst'] = (Top15['Energy Supply'] / Top15['Energy Supply per Capita'])
Top15 = Top15.reset_index()
Top15['Continent'] = [ContinentDict[country] for country in Top15['Country']]
# print(Top15['Continent'])
# print(ContinentDict.values())
# Top15['Continent'] = [ContinentDict[country] for country in Top15['Country']]
target = Top15.set_index('Continent').groupby(level = 0)['PopEst'].agg({'size':np.size,
'sum':np.sum,
'mean':np.mean,
'std':np.std})
ans = target[['size', 'sum', 'mean', 'std']]
return ans
answer_eleven_alter()
C:\Users\asus\Anaconda3\lib\site-packages\ipykernel_launcher.py:33: FutureWarning: using a dict on a Series for aggregation is deprecated and will be removed in a future version. Use named aggregation instead. >>> grouper.agg(name_1=func_1, name_2=func_2)
size | sum | mean | std | |
---|---|---|---|---|
Continent | ||||
Asia | 5.0 | 2.898666e+09 | 5.797333e+08 | 6.790979e+08 |
Australia | 1.0 | 2.331602e+07 | 2.331602e+07 | NaN |
Europe | 6.0 | 4.579297e+08 | 7.632161e+07 | 3.464767e+07 |
North America | 2.0 | 3.528552e+08 | 1.764276e+08 | 1.996696e+08 |
South America | 1.0 | 2.059153e+08 | 2.059153e+08 | NaN |
Cut % Renewable into 5 bins. Group Top15 by the Continent, as well as these new % Renewable bins. How many countries are in each of these groups?
This function should return a Series with a MultiIndex of Continent
, then the bins for % Renewable
. Do not include groups with no countries.
import pandas as pd
def answer_twelve():
Top15 = answer_one()
ContinentDict = {'China':'Asia',
'United States':'North America',
'Japan':'Asia',
'United Kingdom':'Europe',
'Russian Federation':'Europe',
'Canada':'North America',
'Germany':'Europe',
'India':'Asia',
'France':'Europe',
'South Korea':'Asia',
'Italy':'Europe',
'Spain':'Europe',
'Iran':'Asia',
'Australia':'Australia',
'Brazil':'South America'}
Top15 = Top15.reset_index()
Top15['Continent'] = [ContinentDict[country] for country in Top15['Country']]
Top15['bins'] = pd.cut(Top15['% Renewable'], 5)
Top15 = Top15.groupby(['Continent', 'bins'])
return Top15.size()
answer_twelve()
Continent bins Asia (2.212, 15.753] 4 (15.753, 29.227] 1 Australia (2.212, 15.753] 1 Europe (2.212, 15.753] 1 (15.753, 29.227] 3 (29.227, 42.701] 2 North America (2.212, 15.753] 1 (56.174, 69.648] 1 South America (56.174, 69.648] 1 dtype: int64
Convert the Population Estimate series to a string with thousands separator (using commas). Do not round the results.
e.g. 317615384.61538464 -> 317,615,384.61538464
This function should return a Series PopEst
whose index is the country name and whose values are the population estimate string.
import pandas as pd
def answer_thirteen():
Top15 = answer_one()
Top15['PopEst'] = Top15['Energy Supply'] / Top15['Energy Supply per Capita']
Top15['PopEst'] = Top15['PopEst'].apply(lambda x: "{:,}".format(x))
return pd.Series(Top15['PopEst'])
answer_thirteen()
Country China 1,367,645,161.2903225 United States 317,615,384.61538464 Japan 127,409,395.97315437 United Kingdom 63,870,967.741935484 Russian Federation 143,500,000.0 Canada 35,239,864.86486486 Germany 80,369,696.96969697 India 1,276,730,769.2307692 France 63,837,349.39759036 South Korea 49,805,429.864253394 Italy 59,908,256.880733944 Spain 46,443,396.2264151 Iran 77,075,630.25210084 Australia 23,316,017.316017315 Brazil 205,915,254.23728815 Name: PopEst, dtype: object
Use the built in function plot_optional()
to see an example visualization.
def plot_optional():
import matplotlib as plt
%matplotlib inline
Top15 = answer_one()
ax = Top15.plot(x='Rank', y='% Renewable', kind='scatter',
c=['#e41a1c','#377eb8','#e41a1c','#4daf4a','#4daf4a','#377eb8','#4daf4a','#e41a1c',
'#4daf4a','#e41a1c','#4daf4a','#4daf4a','#e41a1c','#dede00','#ff7f00'],
xticks=range(1,16), s=6*Top15['2014']/10**10, alpha=.75, figsize=[16,6]);
for i, txt in enumerate(Top15.index):
ax.annotate(txt, [Top15['Rank'][i], Top15['% Renewable'][i]], ha='center')
print("This is an example of a visualization that can be created to help understand the data. \
This is a bubble chart showing % Renewable vs. Rank. The size of the bubble corresponds to the countries' \
2014 GDP, and the color corresponds to the continent.")
plot_optional() # Be sure to comment out plot_optional() before submitting the assignment!
This is an example of a visualization that can be created to help understand the data. This is a bubble chart showing % Renewable vs. Rank. The size of the bubble corresponds to the countries' 2014 GDP, and the color corresponds to the continent.