1.1. Linear Models

The following are a set of methods intended for regression in which the target value is expected to be a linear combination of the
features. In mathematical notation, if § is the predicted value.

J(w,) = wo + wiz1+. .. +w,pz,
Across the module, we designate the vector w = (wy, ... ,wp) as coef_ and wg as intercept_.

To perform classification with generalized linear models, see Logistic regression.

1.1.1. Ordinary Least Squares

LinearRegression fits a linear model with coefficients w = (wy,... ,w,,) to minimize the residual sum of squares between the
observed targets in the dataset, and the targets predicted by the linear approximation. Mathematically it solves a problem of the
form:

min || Xw — y]|3

1.1.1.2. Ordinary Least Squares Complexity

The least squares solution is computed using the singular value decomposition of X. If X is a matrix of shape (n_samples,
n_features) this method has a cost of O(TsamplesM ey yres)r 3SUMING that Ngamples > Mfeatures-

1.1.2. Ridge regression and classification

1.1.2.1. Regression

Ridge regression addresses some of the problems of Ordinary Least Squares by imposing a penalty on the size of the coeffi-
cients. The ridge coefficients minimize a penalized residual sum of squares:

min|| Xw — yi[3 + o fu|}

The complexity parameter a > 0 controls the amount of shrinkage: the larger the value of «, the greater the amount of shrink-
age and thus the coefficients become more robust to collinearity.

1.1.3. Lasso

The Lasso is a linear model that estimates sparse coefficients. It is useful in some contexts due to its tendency to prefer solutions
with fewer non-zero coefficients, effectively reducing the number of features upon which the given solution is dependent. For
this reason, Lasso and its variants are fundamental to the field of compressed sensing. Under certain conditions, it can recover
the exact set of non-zero coefficients (see Compressive sensing: tomography reconstruction with L1 prior (Lasso)).

Mathematically, it consists of a linear model with an added regularization term. The objective function to minimize is:

. 1
min ——— [Xw -y} + | ul];
g TMsamples

The lasso estimate thus solves the minimization of the least-squares penalty with «| |'w| | 1 added, where « is a constant and
||w|| is the £;-norm of the coefficient vector.

The implementation in the class Lasso uses coordinate descent as the algorithm to fit the coefficients. See Least Angle
Regression for another implementation:

1.1.5. Elastic-Net

ElasticNet is a linear regression model trained with both £; and £5-norm regularization of the coefficients. This combination al-
lows for learning a sparse model where few of the weights are non-zero like Lasso, while still maintaining the regularization prop-
erties of Ridge. We control the convex combination of £; and £ using the 11_ratio parameter.

Elastic-net is useful when there are multiple features that are correlated with one another. Lasso is likely to pick one of these at
random, while elastic-net is likely to pick both.

A practical advantage of trading-off between Lasso and Ridge is that it allows Elastic-Net to inherit some of Ridge's stability un-
der rotation.

The objective function to minimize is in this case

a(l—p)
1w 3113 + aplfol]y + = o]
TN samples

min
w

* The learning algorithm finds the parameters that
optimize an objective function, typically to
minimize some kind of loss function of the
predicted target values vs. actual target values.

Ridge Regression

* Ridge regression learns w, b using the same least-squares criterion but adds a
penalty for large variations in w parameters

N p
RSSripce(w,b) = Z yi—(w-x;+b)’+a Z sz
{i=1} {(j=1}

* Once the parameters are learned, the ridge regression prediction formula is the
same as ordinary least-squares.

* The addition of a parameter penalt{ is called reqularization. Regularization
prevents overfitting by restricting the model, typically to reduce its complexity.

* Ridge regression uses L2 reqularization: minimize sum of squares of w entries
* The influence of the regularization term is controlled by the a parameter.
* Higher alpha means more regularization and simpler models.

Lasso regression is another form of regularized linear
regression that uses an L1 reqularization penalty for
training (instead of ridge's L2 penality)

L1 penalty: Minimize the sum of the absolute values of the coefficients
N p
RSSuassoW,b) =) (i — w-xi+ b)) +a) |
{i=1} U=1}
* This has the effect of setting parameter weights in w to zero for the

least influential variables. This is called a sparse solution: a kind of
feature selection

* The parameter a« controls amount of L1 regularization (default = 1.0).
» The prediction formula is the same as ordinary least-squares.

* When to use ridge vs lasso regression:
— Many small/medium sized effects: use ridge.
— Only a few variables with medium/large effect: use lasso.

2.2.1 Update Equations
The objective of linear regression is to minimize the cost function

1 " i (i) 2
JO =5, (e () = y)
where the hypothesis /,(x) is given by the linear model
]l()(\) = 9’\ = 60 + 9].\‘1

Recall that the parameters of your model are the ¢ values. These are the values you will adjust to minimize

cost J(0). One way to do this is to use the batch gradient descent algorithm. In batch gradient descent, each
iteration performs the update

—pn _1 " @) _ v\ v ;
0,:=0, a,‘,,Zi:u (h (x@) —y)xf,." (simultaneously update @; for all j)

With each step of gradient descent, your parameters j come closer to the optimal values that will achieve the
lowest cost /().

3.3 Normal Equations

In the lecture videos, you learned that the closed-form solution to linear regression is

0 =(xTx)"'x"y

Using this formula does not require any feature scaling, and you will get an exact solution in one calculation:
there is no "loop until convergence" like in gradient descent.

1.1.11. Logistic regression

Logistic regression, despite its name, is a linear model for classification rather than regression. Logistic regression is also known
in the literature as logit regression, maximum-entropy classification (MaxEnt) or the log-linear classifier. In this model, the proba-
bilities describing the possible outcomes of a single trial are modeled using a logistic function.

Logistic regression is implemented in LogisticRegression. This implementation can fit binary, One-vs-Rest, or multinomial logis-
tic regression with optional £, £ or Elastic-Net regularization.

Note: Regularization is applied by default, which is common in machine learning but not in statistics. Another advantage of
regularization is that it improves numerical stability. No regularization amounts to setting C to a very high value.

Sigmoid
Logistic Regression Model
glz)=—1
l4+e*

hy(x) = g(0"x),

__(x||1)T0 _- —_QT(.xll)) __
X0 — _(xuzzji)TH - —0T(x2) —
__(x(m))Te — | — QT(x(mjn) _

Cost function

|
o)

J) =1 =y log(hy(x'")) = (1 = y') log(1 — hy(x'"))] +

[
=

Gradient

To vectorize this operation over the dataset, we start by writing out all the partial derivatives explicitly for all @;,

0J(0)]
20, M—m . .

.() Z,’:] (hg(«\“’) _),ll))"..;l,]
aJ(0) , 4)

a0, > (ho(x™) = y7)x{p)

' _1 m () non]| =L DY) i — L -
O | = LIS, (holx) = y) 59 | = S () =)0 = LXT) =) (1)
01(0) [2in (o(x®) = y?) 0

a0"

def gradient_descent(X, y, theta, lambda_, eps, alpha, max iter): # alpha is learning rate
losses = []
i=0
print("Iteration: Cost")

while(i < max_iter):
i 4= 1
grad = gradient(X, y, theta, lambda_)
theta -= alpha * grad
loss = cost(X, y, theta, lambda_)
if (i % 1000 == 0):
print("{}: {:.8f}".format(i, loss))

len_losses = len(losses)
if (len_losses == 0):
diff = np.abs(loss)
else :
diff = np.abs(losses[len_losses-1] - loss)

losses.append(loss)
if (diff < eps):

return theta, losses

return theta, losses

Softmax

(5 points) Prove that softmax is invariant to constant offsets in the input, that is, for any input vector

x and any constant c,
softmax(x) = softmax(x +)

where & + ¢ means adding the constant ¢ to every dimension of . Remember that

Ty

softmaz(x); = ﬁ (1)
Note: In practice, we make use of this property and choose ¢ = — max; x; when computing softmaz
probabilities for numerical stability (i.e., subtracting its mazimum element from all elements of x).
Regularized Cost Function
;. \
6 X
[t n ok el c S
- __.1 z 1{5:\) Qo -l—)\i_zG.
CDS+ = - K ' K BT . . '.,.1 \)
m 11 321 e LXi i=1)

) J

\ Ly So-g—'\'max

yYL: nuhbe,v of So\rvplés n: humbev O‘J' ‘}eahns
K- number o-[' classes

Gradient with L2 Regularization

1 i : i .
ot] 25 g o] e
)

for j>/i-

ek L] (Y-P) X+ O |

Ld

20
L SeftmaX

We should not regularize the 6,

1.4. Support Vector Machines

Support vector machines (SVMs) are a set of supervised learning methods used for classification, regression and outliers
detection.

The advantages of support vector machines are:

« Effective in high dimensional spaces.

» Still effective in cases where number of dimensions is greater than the number of samples.

¢ Uses a subset of training points in the decision function (called support vectors), so it is also memory efficient.

» Versatile: different Kernel functions can be specified for the decision function. Common kernels are provided, but it is also
possible to specify custom kernels.

The disadvantages of support vector machines include:

« |f the number of features is much greater than the number of samples, avoid over-fitting in choosing Kernel functions and reg-
ularization term is crucial.

» SVMs do not directly provide probability estimates, these are calculated using an expensive five-fold cross-validation (see
Scores and probabilities, below).

Maximum margin linear classifier: Linear Support Vector
Machines

Sample binary classification problem with two informative features

3

f(x,w,b) = sign(w e x + b)

Maximum margin classifier

The linear classifier with
maximum margin is a linear
Support Vector Machine
(LSVM).

Given training vectors z; € R?, i=1,..., n, in two classes, and a vector y € {1, —1}", our goal is to find w € R? and b € R such
that the prediction given by sign(w? ¢(z) + b) is correct for most samples.

SVC solves the following primal problem:

1 T n
min —w w + C i
wb(2 ;C
subject to y;(w d(z;) +b) > 1 — ¢,
(:>0i=1,...,n

Intuitively, we're trying to maximize the margin (by minimizing ||w| |2 = wlw), while incurring a penalty when a sample is mis-
classified or within the margin boundary. Ideally, the value yi(w’[q&(mi) -+ b) would be > 1 for all samples, which indicates a per-
fect prediction. But problems are usually not always perfectly separable with a hyperplane, so we allow some samples to be at a
distance (; from their correct margin boundary. The penalty term C controls the strength of this penalty, and as a result, acts as
an inverse regularization parameter (see note below).

The dual problem to the primal is

1 .. -
min —a’Qa — efa
a 2
subject to y a = 0
0<a; <C,i=1,...,n

where e is the vector of all ones, and Q is an n. by n positive semidefinite matrix, Qij = yiyjK(:z:,-, a:j), where
K(z;, :r:j) = ¢(:z:,~)T¢(:1:j) is the kernel. The terms «; are called the dual coefficients, and they are upper-bounded by C. This

dual representation highlights the fact that training vectors are implicitly mapped into a higher (maybe infinite) dimensional space
by the function ¢: see kernel trick.

Once the optimization problem is solved, the output of decision_function for a given sample & becomes:

Z yioi K(z:,2) + b,
€SV

and the predicted class correspond to its sign. We only need to sum over the support vectors (i.e. the samples that lie within the
margin) because the dual coefficients a; are zero for the other samples.

These parameters can be accessed through the attributes dual_coef_ which holds the product y;a;, support_vectors_ which
holds the support vectors, and intercept_ which holds the independent term b

Note: While SVM models derived from libsvm and liblinear use C as regularization parameter, most other estimators use al-
pha. The exact equivalence between the amount of regularization of two models depends on the exact objective function opti-
mized by the model. For example, when the estimator used is Ridge regression, the relation between them is given as

C =

1
alpha *

Regularization for SVMs: the C parameter

* The strength of regularization is determined by C

» Larger values of C: less regularization
— Fit the training data as well as possible
— Each individual data point is important to classify correctly

» Smaller values of C: more regularization
— More tolerant of errors on individual data points

1.4.6. Kernel functions

The kernel function can be any of the following:

* linear: (z,z').

» polynomial: (y{z,z’) + r)¢, where d is specified by parameter degree, r by coefo.

o rbf: exp(—'y||:z: — x'||2), where 7y is specified by parameter gamma, must be greater than 0.
» sigmoid tanh(y(z, z') + r), where is specified by coef@.

Radial Basis Function Kernel

K(x,x") = exp [y - [lx — x'II?]

Original input space Feature space

A kernel is a similarity measure (modified dot product) between data points

RZSO!AA“C— »eﬂ. PVololihuz de max{m[gq-p“ion:

N

. L .-

0y Ma)):l,...,%N i?,i)\b- 3 li ClC))\l)\) kl)
\/.‘sisN. Ai %o

N
s C; Ai =0
e

2> Transform fe problare de Maximi sation

vers e phb\w do mwuminasation

L s Ki; - 'z‘./\
09 pin zl'iﬂc'c)khj D '
Ais - AN ‘)
Ct. Y ieienN -N €0
Y
Z (CiNi=0
i#4
h .
: . N \ - .>‘
™iIn Jzi‘?_::i Cle }\;)‘JKJ l% |
(Y N ~ ol
5 mindl TAZ c.c)k.-)'_ZA)— T A
=1 D)L)t >4
N~ e

Linear Models: Pros and Cons

Pros: Cons:

+ Simple and easy to train. * For lower-dimensional data,

« Fast prediction. other models may have
superior generalization

» Scales well to very large
datasets.

* Works well with sparse data.

* Reasons for prediction are
relatively easy to interpret.

performance.

For classification, data may not
be linearly separable (more on
this in SVMs with non-linear
kernels)

1.9. Naive Bayes

Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes' theorem with the “naive” assumption
of conditional independence between every pair of features given the value of the class variable. Bayes' theorem states the fol-
lowing relationship, given class variable y and dependent feature vector x; through z,,, :

P(y)P(mls“'sxn Iy)
P(xl,...,xn)

P(ylx.l!"'sxn)':

Using the naive conditional independence assumption that
P(-’Ei|y,$1, PP 7 PR 7 R P mn) = P(a:zly):

for all 7, this relationship is simplified to

Ply| 1y..r) = © D1 Pl |9)
Iyseeylp

P(ml, vy Tp)
Since P(z1,...,Zy5) is constant given the input, we can use the following classification rule:

P(y|2y,...,,) x P(y HP(m. y)
Y
n
9 = argmax P(y HP z; | v),
4 i=1
and we can use Maximum A Posteriori (MAP) estimation to estimate P(y) and P(z; | y); the former is then the relative frequen-
cy of class y in the training set.
The different naive Bayes classifiers differ mainly by the assumptions they make regarding the distribution of P(z; | y).

In spite of their apparently over-simplified assumptions, naive Bayes classifiers have worked quite well in many real-world situa-
tions, famously document classification and spam filtering. They require a small amount of training data to estimate the neces-
sary parameters. (For theoretical reasons why naive Bayes works well, and on which types of data it does, see the references
below.)

1.9.1. Gaussian Naive Bayes

GaussianNB implements the Gaussian Naive Bayes algorithm for classification. The likelihood of the features is assumed to be
Gaussian:

P(z; [y) =

2
! exp (_ (zzz é‘y))
1/21ra§ Ty

The parameters o, and p,, are estimated using maximum likelihood.

Likelihood of the Prior
Evidence given that the Probability of
Hypothesis is True the Hypothesis

P(E|H) = P(H)
P(E)

\\

Prior Probability
that the evidence is
True

P(H|E) =

Posterior Probability of
the Hypothesis given
that the Evidence is

True

can then use Bayes rule to derive the posterior distribution on y given z:

p(zly)p(y)

p(ylz) = 5(2)

Here, the denominator is given by p(z) = p(z|ly = Dp(y = 1) + p(zly =
0)p(y = 0) (you should be able to verify that this is true from the standard
properties of probabilities), and thus can also be expressed in terms of the
quantities p(z|y) and p(y) that we’ve learned. Actually, if were calculating
p(y|z) in order to make a prediction, then we don’t actually need to calculate
the denominator, since

arg max p(z|y)p(y)
v p(z)
= argmgxp(wly)p(y)-

arg max p(y|z)

MLE: Maximum likelihood estimation
-

Ore = 9T ACo1e)

\

L - VaossewmiPance
ony me lo A(0)e)) 7 =%
’ &7‘ . (m) L(e) - by £(010©)
- Mbmov‘ ‘.QD (‘Tr 4\(15 lo))
&

o NG Mmoo 2}_ &3(41(1.’)9))
o c=,

= Mbaﬂ—'\"m %c,é' \‘?oa (,ﬁ(x;lo))

= wmim L) (fx)) e fo = AOxA®)
& m o,

o L (hw) = -log(f)

L) ‘Poa- vAcus-emU-Me
nu‘aa Je

MAP: maximum a posteriori

UAxiun A Pos TE€Ror: =

AP &
v@ﬂ*%“&‘\ﬁ;“‘ - fLioR
& ©
= a-no;w\)‘ "\(D)) 4\(__-2— (Kio\e Ao &&3&0)
(D)

‘K. (mo\cpmion} de O

= Mbmx 4\((] 0) /*\(9') (con)(\(D) (m)tpw‘ul'
& Me)

Comparing both MLE and MAP equation, the only thing differs is the inclusion of prior
P(6) in MAP, otherwise they are identical. What it means is that, the likelihood is now
weighted with some weight coming from the prior.

Let’s consider what if we use the simplest prior in our MAP estimation, i.e. uniform prior.
This means, we assign equal weights everywhere, on all possible values of the 6. The
implication is that the likelihood equivalently weighted by some constants. Being constant,
we could be ignored from our MAP equation, as it will not contribute to the maximization.

Let’s be more concrete, let’s say we could assign six possible values into 6. Now, our prior

P(0) is % everywhere in the distribution. And consequently, we could ignore that constant
in our MAP estimation.

Orrap = arg ma.xz log P(z;|0) + log P(6)
0 i
= argmax Y log P(z;|0) + const
g1 Z g P(z:(6)
= argmax Y log P(z;|0
g1 Z g P(;|6)

=OmLE
We are back at MLE equation again!

If we use different prior, say, a Gaussian, then our prior is not constant anymore, as
depending on the region of the distribution, the probability is high or low, never always the
same.

What we could conclude then, is that MLE is a special case of MAP, where the prior is
uniform!

L(C,Qc.ss;fiw de Lo;)m u*‘:««. A\&"”x> m u\'\{L\S“\’ 'le Nv\:ﬁ‘
K Rogn
VY Yales A(Yzcl(R==) - argmonr ﬁ\kx-,x.l"fzc)lp(‘fLC)
czt--- ™ e
h(X=x)
‘ip\&gw M
- Mbﬂ*c‘:)‘ *&*: x\‘[:o) *\‘f—;c)

. Om dox ashimin W(XIY) & (Y) & poitn da D

« Pan o\mqw; czlec-m, o€ D = ?szm;)éo !‘3'»*"_}
Ly Sex e domnies TID
€inl ewivesk JK\K\‘(==)

. €3‘Hmo\ *t(\/=<'.> = \—;D—‘cl

m

. Uhlsa wme it e J‘q\'{ma\‘\'w de dewsi¥e Joun

i X[V€) & peakin do Do o (X129
Razole & escification -

£ (») = oNhme*
c=l---m

Ax=x\¥=<) k(1= >

’L) Class: fam de Bostes mox§ (Naive fouen)

7/ ,{wl\' 3 M(—"Oﬂe“t ot Ren composambes e)(GAKdl Sonb
|mAf:pV\u‘0 So.(r\\cﬂ\£ \, z

PR =) = A (DR D DD 1Y)

- (B3, | Y=9) #LT83, \Y=0)— 4 ©I\1=9)
I\ ke Myt b faske /D

CAtACITE PE CAPACI TE DU
L/> BAYES NAIE < chssiereve Do RAYES

) ;{?m(g o eo‘ﬁmw/\

Naive Bayes Classifiers: a simple, probabilistic classifier

Pros:

family

These classifiers are called ‘Naive' because they assume that
features are conditionally independent, given the class.

In other words: they assume that, for all instances of a given
class, the features have little/no correlation with each other.

Highly efficient learning and prediction.

But generalization performance may worse than more
sophisticated learning methods.

Can be competitive for some tasks.

Naive Bayes classifiers: Pros and Cons

Cons:

Easy to understand « Assumption that features are

Simple, efficient
parameter estimation

Works well with high-
dimensional data

Often useful as a
baseline comparison
against more
sophisticated methods

conditionally independent
given the class is not
realistic.

As a result, other classifier
types often have better
generalization performance.

Their confidence estimates
for predictions are not very
accurate.

1.10. Decision Trees

Decision Trees (DTs) are a non-parametric supervised learning method used for classification and regression. The goal is to cre-
ate a model that predicts the value of a target variable by learning simple decision rules inferred from the data features. A tree
can be seen as a piecewise constant approximation.

The disadvantages of decision trees include:

» Decision-tree learners can create over-complex trees that do not generalise the data well. This is called overfitting.
Mechanisms such as pruning, setting the minimum number of samples required at a leaf node or setting the maximum depth
of the tree are necessary to avoid this problem.

» Decision trees can be unstable because small variations in the data might result in a completely different tree being
generated. This problem is mitigated by using decision trees within an ensemble.

» Predictions of decision trees are neither smooth nor continuous, but piecewise constant approximations as seen in the above
figure. Therefore, they are not good at extrapolation.

» The problem of learning an optimal decision tree is known to be NP-complete under several aspects of optimality and even for
simple concepts. Consequently, practical decision-tree learning algorithms are based on heuristic algorithms such as the
greedy algorithm where locally optimal decisions are made at each node. Such algorithms cannot guarantee to return the
globally optimal decision tree. This can be mitigated by training multiple trees in an ensemble learner, where the features and
samples are randomly sampled with replacement.

» There are concepts that are hard to learn because decision trees do not express them easily, such as XOR, parity or multiplex-
er problems.

» Decision tree learners create biased trees if some classes dominate. It is therefore recommended to balance the dataset prior
to fitting with the decision tree.

Some advantages of decision trees are:

* Simple to understand and to interpret. Trees can be visualised.

* Requires little data preparation. Other techniques often require data normalisation, dummy variables need to be created and
blank values to be removed. Note however that this module does not support missing values.

* The cost of using the tree (i.e., predicting data) is logarithmic in the number of data points used to train the tree.

« Able to handle both numerical and categorical data. However scikit-learn implementation does not support categorical vari-
ables for now. Other techniques are usually specialised in analysing datasets that have only one type of variable. See algo-
rithms for more information.

« Able to handle multi-output problems.

« Uses a white box model. If a given situation is observable in a model, the explanation for the condition is easily explained by
boolean logic. By contrast, in a black box model (e.g., in an artificial neural network), results may be more difficult to interpret.

* Possible to validate a model using statistical tests. That makes it possible to account for the reliability of the model.

« Performs well even if its assumptions are somewhat violated by the true model from which the data were generated.

Réprésente une partition de I'espace (partition of space of training dataset).

criterion : {“gini”, “entropy"”}, default="gini"
The function to measure the quality of a split. Supported criteria are “gini” for the Gini impurity and
“"entropy” for the information gain.

maximize the information gain.

* max depth: controls maximum depth (number of split
points). Most common way to reduce tree complexity and
overfitting.

* min_samples leaf: threshold for the minimum # of data
instances a leaf can have to avoid further splitting.

* max leaf nodes: limits total number of leaves in the tree.

In practice, adjusting only one of these (e.g. max _depth) is
enough to reduce overfitting.

Random Forest Process

Original dataset Randomized Randomized Ensemble
ootstrap copies feature splits prediction

n_estimator

fxuir label fruit_nase i

—
]
. - - !
= E%
===
- Seie
-
=
=

]]

1.11.2.1. Random Forests

In random forests (see RandomForestClassifier and RandomForestRegressor classes), each tree in the ensemble is built from a
sample drawn with replacement (i.e., a bootstrap sample) from the training set.

Furthermore, when splitting each node during the construction of a tree, the best split is found either from all input features or a
random subset of size max_features. (See the parameter tuning guidelines for more details).

The purpose of these two sources of randomness is to decrease the variance of the forest estimator. Indeed, individual decision
trees typically exhibit high variance and tend to overfit. The injected randomness in forests yield decision trees with somewhat
decoupled prediction errors. By taking an average of those predictions, some errors can cancel out. Random forests achieve a
reduced variance by combining diverse trees, sometimes at the cost of a slight increase in bias. In practice the variance reduc-
tion is often significant hence yielding an overall better model.

In contrast to the original publication [B2001], the scikit-learn implementation combines classifiers by averaging their probabilis-
tic prediction, instead of letting each classifier vote for a single class.

Prediction Using Random Forests
1. Make a prediction for every tree in

the forest. o
2. Combine individual predictions Délj ~

— Regression: mean of individual tree 07,03) (0.56, 0.44)
predictions. -
— Classification:

« Each tree gives probability for each class. ﬁ 04,06)
* Probabilities averaged across trees. -=
* Predict the class with highest probability.

Random Forest: Pros and Cons

Pros: Cons:

* Widely used, excellent The resulting models are
prediction performance on often difficult for humans to
many problems. interpret

* Doesn't require careful . .
normalization of features or * Like decision trees, random
extensive parameter tuning. forests may not be a good

+ Like decision trees, handles choice for very high-

a mixture of feature types. dimensional tasks (e.g. text

« Easily parallelized across classifiers) compared to
multiple CPUs. fast, accurate linear models.

Random Forests: RandomForestClassifier
Key Parameters

* n estimators: number of trees to use in ensemble (default: 10).

— Should be larger for larger datasets to reduce overfitting (but uses more
computation).

* max features: has a strong effect on performance. Influences
the diversity of trees in the forest.
— Default works well in practice, but adjusting may lead to some further gains.
* max depth: controls the depth of each tree (default: None. Splits
untilall leaves are pure).

* n_jobs: How many cores to use in parallel during training.

+ Choose a fixed setting for the random_state parameter if you need
reproducible results.

1.6. Nearest Neighbors

sklearn.neighbors provides functionality for unsupervised and supervised neighbors-based learning methods. Unsupervised
nearest neighbors is the foundation of many other learning methods, notably manifold learning and spectral clustering.
Supervised neighbors-based learning comes in two flavors: classification for data with discrete labels, and regression for data
with continuous labels.

The principle behind nearest neighbor methods is to find a predefined number of training samples closest in distance to the new
point, and predict the label from these. The number of samples can be a user-defined constant (k-nearest neighbor learning), or
vary based on the local density of points (radius-based neighbor learning). The distance can, in general, be any metric measure:
standard Euclidean distance is the most common choice. Neighbors-based methods are known as non-generalizing machine
learning methods, since they simply “remember” all of its training data (possibly transformed into a fast indexing structure such
as a Ball Tree or KD Tree).

Despite its simplicity, nearest neighbors has been successful in a large number of classification and regression problems, includ-
ing handwritten digits and satellite image scenes. Being a non-parametric method, it is often successful in classification situa-
tions where the decision boundary is very irregular.

2.5.1. Principal component analysis (PCA)

2.5.1.1. Exact PCA and probabilistic interpretation

PCA is used to decompose a multivariate dataset in a set of successive orthogonal components that explain a maximum amount
of the variance. In scikit-learn, PCA is implemented as a transformer object that learns n components in its fit method, and can
be used on new data to project it on these components.

sklearn.cluster: Clustering

The sklearn.cluster module gathers popular unsupervised clustering algorithms.

User guide: See the Clustering and Biclustering sections for further details.

Classes

cluster.AffinityPropagation(*[, damping, ...]) Perform Affinity Propagation Clustering of data.
cluster.AgglomerativeClustering([...]) Agglomerative Clustering.

cluster.Birch(*[, threshold, ...]) Implements the BIRCH clustering algorithm.
cluster.DBSCAN([eps, min_samples, metric, ...]) Perform DBSCAN clustering from vector array or distance matrix.
cluster.FeatureAgglomeration([n_clusters, ...]) Agglomerate features.

cluster.KMeans([n_clusters, init, n_init, ...]) K-Means clustering.

cluster.MiniBatchKMeans([n_clusters, init, ...]) Mini-Batch K-Means clustering.

cluster.MeanShift(*[, bandwidth, seeds, ...]) Mean shift clustering using a flat kernel.

cluster.OPTICS(*[, min_samples, max_eps, ...]) Estimate clustering structure from vector array.
cluster.SpectralClustering([n_clusters, ...]) Apply clustering to a projection of the normalized Laplacian.
cluster.SpectralBiclustering([n_clusters, ...]) Spectral biclustering (Kluger, 2003).
cluster.SpectralCoclustering([n_clusters, ...]) Spectral Co-Clustering algorithm (Dhillon, 2001).

sklearn.manifold: Manifold Learning

The sklearn.manifold module implements data embedding techniques.
User guide: See the Manifold learning section for further details.

manifold.Isomap(*[, n_neighbors, ...]) Isomap Embedding.

manifold.LocallyLinearEmbedding(*[, ...]) Locally Linear Embedding.

manifold.MDS([n_components, metric, n_init, ...]) Multidimensional scaling.
manifold.SpectralEmbedding([n_components, ...]) Spectral embedding for non-linear dimensionality reduction.
manifold.TSNE([n_components, perplexity, ...]) T-distributed Stochastic Neighbor Embedding.

manifold.locally_linear_embedding(X, * ...) Perform a Locally Linear Embedding analysis on the data.

manifold.smacof(dissimilarities, *[, ...]) Compute multidimensional scaling using the SMACOF algorithm.
. . - *
E‘a":]L)f Sl it b e e Project the sample on the first eigenvectors of the graph Laplacian.

. . .
Fa"?)f old. trustworthiness(X, X_embedded, Expresses to what extent the local structure is retained.

Bagging - Bootstrap AGGregat/NG

Learn n base learners in parallel, combine to reduce model variance

Each base learner is trained on a bootstrap sample
- Given a dataset of m examples, create a sample by randomly sampling m
examples with replacement
+ Around 1 — 1/e = 63 % unique examples will be sampled
use the out-of-bag examples for validation
Combine learners by averaging the outputs (regression) or majority
voting (classification)

Random forest: bagging with decision trees

+ usually select random subset of features for each bootstrap sample

Boosting

+ Learn n weak learners sequentially, combine to reduce
model bias

+ At step ¢, repeat:

« Evaluate the existing learners’ errors e,

+ Train a weak learner f,, focus on wrongly predicted examples
+ AdaBoost: Re-sample data according to €,
+ Gradient boosting: Train learner to predict €;

+ Additively combining existing weak learners with f,

1.11.3. AdaBoost

The module sklearn.ensemble includes the popular boosting algorithm AdaBoost, introduced in 1995 by Freund and Schapire
[FS1995].

The core principle of AdaBoost is to fit a sequence of weak learners (i.e., models that are only slightly better than random guess-
ing, such as small decision trees) on repeatedly modified versions of the data. The predictions from all of them are then com-
bined through a weighted majority vote (or sum) to produce the final prediction. The data modifications at each so-called boost-
ing iteration consist of applying weights w1y, ws, ..., w to each of the training samples. Initially, those weights are all set to

w; = 1/N, so that the first step simply trains a weak learner on the original data. For each successive iteration, the sample
weights are individually modified and the learning algorithm is reapplied to the reweighted data. At a given step, those training
examples that were incorrectly predicted by the boosted model induced at the previous step have their weights increased,
whereas the weights are decreased for those that were predicted correctly. As iterations proceed, examples that are difficult to
predict receive ever-increasing influence. Each subsequent weak learner is thereby forced to concentrate on the examples that
are missed by the previous ones in the sequence [HTF].

AdaBoost [Freund & Schapire’95)

~
Given: (z1,41), -+, (Tm,ym) where z; € X, y; € Y = {—1,+1}) i D(‘)/ﬁ-‘l‘“.)*ﬂ

Initialize Dy (i) = 1/m. njtially equal weights > ""0""\“““ e
Fort= lyisesds

e Trainweak learner using distribution D;. e bayes, decision stump
e Getweak classifier h; : X — R.

e Choose o € R. Magic (+ve)

e Update: ' Increase weight
. Dy(i) exp(—ayihe(zi)) if wrong on pt i

Dy (1) =
Zy yiht(xi)=-1<0

where Z; is a normalization factor

oom Weights for all
Zy =Y Di(i) exp(—agyihi(x;)) pts must sum to 1
i=1

3 Dtafi)=1
t

CLASS i FieVR T WAL

Hoo = sien (2 4 htuD

ot

E,‘_-,O =.)o2*—. +2o°
a = %111 (1 — 6‘) [Freund & Schapire’9s] £ _=A = d = =%
ie = \/Z« = ‘Y‘:L 0

; . m . - [/ }A&'\Q\Se A‘O
®= Poopyiylhe(x") # v’ = Y Di(iY8(he(xi) # vi) Joss, -*’,l‘wg ;?o-ﬂo\bs :

i=1
DN}
(Ares pd’wh’c%w& prche k"z)

Weighted training error

Does ht get i" point wrong

Gradient Boosting Q

« Supports arbitrary differentiable loss
- H/(x): output of combined model at timestep ¢, with H;(x) =0
+ For each step ¢, repeat:

« Train a new learner f, onresiduals: {(x;, y; = H(x)}iz1, . m

« Combine: H,,(x) = H(x) + 1 f,(x) shrinkage parameter # for regularization
oL

. MSEL = %(H(x) —y)?, residual equals negative gradient y — H(x) = — 5

2
. For other loss L, learner 7, = arg min% (f,(x) + a;,g)>
t

Avoid overfittjng: ?UPS?mpJ”]Q; shrinkage, early-stopping

XGBoost Documentation

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and
portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost
provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast
and accurate way. The same code runs on major distributed environment (Hadoop, SGE, MPI) and can solve
problems beyond billions of examples.

>~ LightGBM

Welcome to LightGBM'’s documentation!

LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed and efficient with the
following advantages:

« Faster training speed and higher efficiency.

* Lower memory usage.

« Better accuracy.

* Support of parallel, distributed, and GPU learning.
Capable of handling large-scale data.

Stacking

+ Combine multiple base learners to reduce
variance

+ Base learners can be different model types

+ Linearly combine base learners outputs by
learned parameters

+ Widely used in competitions
+ bagging VS stacking

+ Bagging: bootstrap samples to get diversity

« Stacking: different types of models extract
different features

Multi-layer Stacking

L3
« Stacking base learners in
multiple levels to reduce bias
+ Can use a different set of base L2

learners at each level

« Upper levels (e.g. L2) are trained
on the outputs of the level
below (e.g. L1)

+ Concatenating original inputs
helps

Dense
Concat
Random
Forest GBDT
Inputs
Dense
Concat
Random GBDT
Forest
Concat
Random GBDT
Forest
Inputs

Overfitting in Multi-layer Stacking

« Train leaners from different levels on different data to alleviate

overfitting

+ Split training data into A and B, train L1 learners on A,
run inference on B to generate training data for L2 learners

+ Repeated k-fold bagging:

« Train kmodels as in k-fold cross validation

« Combine predictions of each model on out-of-fold data
+ Repeat step 1,2 by ntimes, average the n predictions of each example for the

next level training

MLP

MLP

MLP

Multi-layer Stacking Results

+ Use 1 additional staked level, with
5-fold repeated bagging

« Error: 0.229 — 0.227

« Training time: 39 sec — 207 sec (5x)

from autogluon.tabular import TabularPredictor

predictor = TabularPredictor(label=label).fit(
train, num_stack_levels=1, num_bag_folds=5)

Bagging =

Boosting Y -
Stacking - Y

K-fold multi-
level stacking

Y Y

model score_test

K

0 NeuralNetMXNet_BAG_L2
1 WeightedEnsemble_L3
2 CatBoost_BAG_L2
3 WeightedEnsemble_L2
4 LightGBM_BAG_L2
5 XGBoost_BAG_L2
6 ExtraTrees_BAG_L2
7 ExtraTrees_BAG_L1
8 RandomForest BAG_L2
9 CatBoost_BAG_L1
10 LightGBM_BAG_L1
11 NeuralNetMXNet_BAG_L1
12 XGBoost_BAG_L1
13 RandomForest BAG_L1

KNeighbors_BAG_L1

-0.225332
-0.226921
-0.227525
-0.228386
-0.228400
-0.228660
-0.228751
-0.233527
-0.234270
-0.237356
-0.238102
-0.238413
-0.241698
-0.242029
-0.457909

-0.219718
-0.216254
-0.217471
-0.218298
-0.218374
-0.218824
-0.217563
-0.224974
-0.220346
-0.227126
-0.225848
-0.238786
-0.235570
-0.227800
-0.447980

n

n

nxlIxk

: Computation | Parallelizati
m
Y n n

1

n

nxk

n: number of learners, I: number of levels, k: k-fold

Generalization, Overfitting, and Underfitting

» Generalization ability refers to an algorithm's ability to give accurate
predictions for new, previously unseen data.

* Assumptions:
— Future unseen data (test set) will have the same properties as the current training sets.

- Thtus, models that are accurate on the training set are expected to be accurate on the test
set.

— But that may not happen if the trained model is tuned too specifically to the training set.
* Models that are too complex for the amount of training data available
are said to overfit and are not likely to generalize well to new
examples.

* Models that are too simple, that don't even do well on the training
data, are said to underfit and also not likely to generalize well.

Bias—variance tradeoff

From Wikipedia, the free encyclopedia

In statistics and machine learning, the bias—variance tradeoff is the property of a model that the variance of the parameter estimated across
samples can be reduced by increasing the bias in the estimated parameters. The bias—variance dilemma or bias-variance problem is the
conflict in trying to simultaneously minimize these two sources of error that prevent supervised learning algorithms from generalizing beyond their
training set:(112]
e The bias error is an error from erroneous assumptions in the learning algorithm. High bias can cause an algorithm to miss the relevant relations
between features and target outputs (underfitting).
e The variance is an error from sensitivity to small fluctuations in the training set. High variance may result from an algorithm modeling the
random noise in the training data (overfitting).

Motivation |edit]

bias low, variance low bias high, bias low, bias high,
variance low: variance high: variance high:

Dilemme biais-variance

En statistique et en apprentissage automatique, le dilemme (ou compromis) biais—-variance est le probléme de

minimiser simultanément deux sources d'erreurs qui empéchent les algorithmes d'apprentissage supervisé de

généraliser au-dela de leur échantillon d'apprentissage :

e Le biais est 'erreur provenant d’hypothéses erronées dans I'algorithme d'apprentissage. Un biais élevé peut
étre lié a un algorithme qui manque de relations pertinentes entre les données en entrée et les sorties prévues

(sous-apprentissage).

o La variance est l'erreur due a la sensibilité aux petites fluctuations de I’échantillon d'apprentissage. Une
variance élevée peut entrainer un surapprentissage, c'est-a-dire modéliser le bruit aléatoire des données

d'apprentissage plutét que les sorties prévues.

Bias-Variance Tradeoff
Bp (v~ o] = Biaslfp P + Varl] + €2

Generalization

Over
Under -
Var[f]

Error

Bias[f]2

Model complexity

MSE :mean
squared error

Reduce Bias & Variance

E, [(y - fD(x))2] = Bias[f,]? + Var[f,] + €2

- Reduce bias - Reducevariance - Reduce 6°
+ A more complex model « A simpler model * Improve data
+ e.g. increase #layers, . At
#hidden units of MLP €.g. regularization
+ Boosting + Bagging
* StaCking . Stacking

Ensemble learning: train and combine multiple
models to improve predictive performance

Binary prediction outcomes

T Label 1 = positive class
i_e (class of interest)
negative
Label 0 = negative class

(everything else)

TP = true positive
FP = false positive (Type | error)

TN = true negative
True FN = false negative (Type Il error)
positive

Predicted negative Predicted positive

Visualization of Different Error Types

digits dataset: positive "'";_ fhi ') is digit 1, negative class (white) all others
Tue ° °

positive

Predict
Positive

TN = 429 FP= 6

Predict

% 1 ke Negative

~ positive

% m“;:icvc FN = 2 TP = 13
l-‘als‘c
ncvgamf

. Feature 1 valu<1a3 h
Accuracy = ———1% Recall = —— Precision = ——
Y = IN+TP+FN+FP TP+FN TP+FP

F1-score: combining precision & recall into a single number

Precision-Recall 2-TP
F1 = 2 . =

Precision+Recall 2-TP+FN+FP

Summarizing an ROC curve in one number:
Area Under the Curve (AUC)

. AUC =0 (WOFS'() AUC =1 (best) ROC curve: (1-of-10 digits classifier)

10
» AUC can be interpreted as: V
1. The total area under the ROC curve.

2. The probability that the classifier will assign a higher
score to a randomly chosen positive example than to a
randomly chosen negative example.

» Advantages:
- Gives a single number for easy comparison.
— Does not require specifying a decision threshold.

Drawbacks:

As with other single-number metrics, AUC loses
information, e.g. about tradeoffs and the shape of the
ROC curve.

— This may be a factor to consider when e.g. wanting to

compare the performance of classifiers with 00
overlapping ROC curves. ao 02

@

o
o

e
-

~—— SVM (gamma = 0.01, area = 1.00)
~— SVM (gamma = 0.10, area = 0.98)
w— SVM (gamma = 0.20, area = 0.66)
= SVM (gamma = 1.00, area = 0.50)

True Positive Rate (Recall)

©
»

04 06 os 10
False Positive Rate

Macro-average:
» Each class has equal weight.

1. Compute metric within each class
2. Average resulting metrics across classes

Micro-average:

» Each instance has equal weight.
» Largest classes have most influence

1. Aggregrate outcomes across all classes
2. Compute metric with aggregate outcomes

Macro-Average vs Micro-Average

If the classes have about the same number of instances,
macro- and micro-average will be about the same.

If some classes are much larger (more instances) than others,
and you want to:

— Weight your metric toward the largest ones, use micro-averaging.

— Weight your metric toward the smallest ones, use macro-averaging.

If the micro-average is much lower than the macro-average
then examine the larger classes for poor metric performance.

If the macro-average is much lower than the micro-average
then examine the smaller classes for poor metric performance.

