
CHAPTER 11 

Variable Selection 

11.1 Introduction 

Frequently we start out with a fairly long list of independent variables that 
we suspect have some effect on the dependent variable, but for various rea­
sons we would like to cull the list. One important reason is the resultant 
parsimony: It is easier to work with simpler models. Another is that reduc­
ing the number of variables often reduces multicollinearity. Still another 
reason is that it lowers the ratio of the number of variables to the number 
of observations, which is beneficial in many ways. 

Obviously, when we delete variables from the model we would like to 
select those which by themselves or because of the presence of other in­
dependent variables have little effect on the dependent variable. In the 
absence of multicollinearity, as, say, with data from a well-designed exper­
iment, variable search is very simple. One only needs to examine the bj's 
and their standard errors and take a decision. Multicollinearity makes such 
decisions more difficult, and is the cause of any complexity in the methods 
given in this chapter. Notice that in the last chapter, when we examined 
the possibility of relationships among the independent variables, we ignored 
the effects any of them might have on the dependent variable. 

Ideally, given the other variables in the model, those selected for removal 
have no effect on the dependent variable. This ideal situation is not likely to 
occur very often, and when it does not we could bias the regression (as we 
shall see in Section 11.2). Moreover, as we shall also show in Section 11.2, 
on the average, 8 2 will tend to increase with a reduction in the variable list. 
Thus the practice of variable search is often a matter of making the best 
compromise between keeping 8 2 and bias low and achieving parsimony and 
reducing multicollinearity. 

During variable selection, one frequently finds, clustered around the cho­
sen model, other models which are nearly 'as good' and not 'statistically 
distinguishable'. As with many other decisions in the practice of regression, 
the decisions involved in variable selection are seldom obvious. More often 
there is no unique choice and the one that is made reflects the analyst's 
best judgment at the time. 

There is yet another problem with variable search procedures. Suppose 
we apply such a procedure to twenty independent variables constructed 
entirely of random numbers. Some of these variables, by sheer chance, may 
appear to be related to the dependent variable. Since we are picking the 
'best' subset from our list, they appear in our short list and we end up with 
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a nonsense relationship. An illustration can be found in Wilkinson (1979), 
and his findings are startling. 

Despite these problems, variable search procedures can be invaluable if 
can-ied out judiciously. However, some further caveats are in order. We 
should be careful not to drop an important variable. For example, if the 
purpose of the study is to determine the relationship between the price of 
something and its sales, it would be silly to drop price just because our 
search procedure recommends it unless we are sure that price has virtually 
no effect on sales. In fact, the lack of effect might be the key finding here or 
may only be due to a poor design matrix where the corresponding column 
had a very short length or was highly related to some other column. Re­
searchers whose primary interest is forecasting should also make sure that 
they are not (without very strong reasons) dropping an easy-to-predict 
independent variable in favor of a more troublesome one. Finally, if theo­
retical considerations or intuitive understanding of the underlying structure 
of the relationship suggest otherwise, the results of the mechanical proce­
dures given below in Section 11.3 should play second fiddle. Ultimately, it 
is the researcher who should choose the variables - not the 'computer'! 

11.2 Some Effects of Dropping Variables 

Assume that 
Yi = (30 + (31xil + ... + (3k X ik + €i 

is the correct model and consider 

(11.1) 

(11.2) 

which includes only the first p-1 < k independent variables from (11.1). In 
this section we discuss the effects of considering the incorrect abbreviated 
model (11.1). Since we have 'starred' several of the subsections of this 
section, we describe below some of the principal results obtained in the 
subsections. 

As mentioned earlier, deleting some independent variables usually biases 
the estimates of the parameters left in the model. However, no bias oc­
curs if the values of the deleted variables are orthogonal to those of the 
remaining variables, and then the estimates of (30, ... ,(3p-l are exactly the 
same whether Xip,' .. ,Xik are included or not. Deletion of variables usually 
increases the value of the expectation of 8 2 and decreases (in the sense that 
the difference is non-negative definite) the covariance matrix of the esti­
mates of (30, ... , (3p-l. Note that we are referring to the covariance matrix, 
which is defined in terms of 0'2, not an estimate of it, which would fre­
quently behave differently. Because estimates of (30, ... ,(3p-l are biased, it 
is not surprising that predicted values usually become biased. One measure 
of this bias is called Mallows' Cpo While a definition of Cp is postponed to 
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Section 11.2.4, the key property for applications is that if (11.2) does not 
lead to much bias in the predicteds, then 

Therefore, if one is considering several candidate models, one can look at 
the corresponding 8~, R~ and Cp values (the first two are the familiar 8 2 , R2 
measures applied to possibly truncated p variable model; all are provided 
by most packages) and judge which models are relatively bias-free. These 
become the ones from which a selection can be made. 

Since coefficients become biased, the deletion of variables can cause 
residuals of the abbreviated model to have non-zero expectations (Sec­
tion 11.2.4). This leads to plots of residuals against predicteds which some­
times show a pattern as if the residuals were related to the predicted values. 
When one sees such a plot, it is reasonable to suspect that a variable has 
been left out that should have been included. However, not much value 
should be placed on an apparent absence of pattern since even in quite 
biased models, such patterned plots do not occur with any regularity. 

11.2.1 EFFECTS ON ESTIMATES OF (3j 

Assume that the correct model is 

y = X13 + €, (11.3) 

where E(€) = ° and cov(€) = a 2 I. Let X = (Xl, X2), and 13' = (13~ 13;) 
where Xl is n x p dimensional, 131 is a p-vector and the other dimensions 
are chosen appropriately. Then 

(11.4) 

While this is the correct model, suppose we leave out X 2132 and obtain the 
estimate bl of 131 by least squares. Then bl = (XiXl)-l Xiy, which not 
only is usually different from the first p components of the estimate b of 
13 obtained by applying least squares to the full model (11.3), but also is 
usually biased, since 

E(bt) = (XiXl)-l Xi E(y) 

= (Xixl)-l Xi (Xl13l + X 2132) = 131 + (Xixl)-l XiX2132· 

Thus, our estimate of 131 obtained by least squares after deleting X 2132 is 
biased by the amount (XiXt)-l XiX2132 . 

Notice that the bias depends both on 132 and X2. For example, if X2 is 
orthogonal to Xl, that is, if XiX2 = 0, then there is no bias. In fact if 
XiX2 = 0, 

) -1 = ( 
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(see Example A.8, p. 276) and since X'y = (X~y X~y), it follows that bl 
is actually the same as the first p components of b. 

11.2.2 *EFFECT ON ESTIMATION OF ERROR VARIANCE 

The estimate of a 2 based on the full model is given by 

S2 = RSSk+d(n - k - 1) == (n - k - 1)-ly'[I - H]y. 

When we delete X 2 f3 2 , an estimate of a 2 based on p independent variables 
will be given by 

where HI = XI(X~XI)X~ and Yp = Xlbl = Hly is the predicted value of 
y based on the first p independent variables. While E(S2) = a 2 , we need to 
calculate E(s~). Since tr(I -Hd = n-p and from (11.3) and Theorem B.3, 
p. 288, we can easily show that E(yy') = a 2 I + Xf3f3'X', we get, using 
various properties of the trace of a matrix (Section A.6, p. 271), 

(n - p) E(s;) = E[y'(I - HdY] = E[ tr((I - Hdyy')] 

= tr[(I - Hd E(yy')] = tr[(I - Hd(a2 I + Xf3f3' X')] 

= (n - p)a2 + tr[(I - HdXf3f3'X'] = (n - p)a2 + f3'X'(I - HdXf3 

Hence, 

and, since E( s2) = a 2, it follows that 

Therefore, s~ is usually a biased estimator of a2 and E( s~) increases when 
variables are deleted. On the other hand, as shown in the next subsection, 
the covariance of bl is less than or equal to the covariance of the estimate of 
f31 based on the full model. Therefore, practical choices involve determina­
tion of the trade-offs between improvements in one aspect and deterioration 
in another, and the reconciliation of these trade-offs with the aims of the 
analysis. 

11.2.3 *EFFECT ON COVARIANCE MATRIX OF ESTIMATES 

Since bl = (X~Xd-1 X~y and cov(y) = a 2 I, we get 

cov(bd = a2(X~Xd-l. 
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However, based on the full model 

Therefore, the covariance of the vector b(l) containing the first p compo­
nents of b is, using Example A.8, p. 276, 

(11.6) 

Similarly, the vector b(2) of the last k+ I-p components of b has covariance 

Since X~X2(X2X2)-IX2XI is positive semi-definite, 

X~XI ~ X~XI - X~X2(X~X2)-1 X~XI' 

(11. 7) 

where the inequality signs are as defined in Section A.13, p. 279. It follows 
that 

(X~XI)-I ~ [X~XI - X~X2(X~X2)-1 X~XI]-I. 

Hence, cov(bl ) ~ cov(b(1)); i.e., the covariance matrix of the estimate of 
first p components of {3 decreases when the remaining components, along 
with the corresponding columns of X, are deleted. 

11.2.4 *EFFECT ON PREDICTED VALUES: MALLOWS' Cp 

Since E[yp] = HI E[y] = HIX(3 it follows that yp is biased, unless X(3-
HIX(3 = [1 - H1]X(3 = E[ep ] = 0, where ep is the vector of the residuals 
from the abbreviated model. Define Bias (Yp) as E[yp - y]. Then 

and 

n 

2)Bias (ypiW = [E(yp) - E(y)]'[E(yp) - E(y)] = {3' X'[1 - H 1]X{3 
i=l 

where Bias (Ypi) is the ith component of Bias (Yp). To make this last ex­
pression scale-free, we standardize it by a 2 • Thus a standardized sum of 
squares of this bias is given by 

which, on using (11.5), becomes 

E[RSSpJ/a2 - (n - p). 
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Hence, an estimate of this standardized bias is 

RSSp/82 - (n - p). (11.8) 

If the bias in Yp introduced by dropping variables is negligible, this quantity 
should be close to zero. 

An alternative way to examine bias in Yp is to look at the mean square 
error matrix MSE(yp), or, more conveniently, at its trace TMSE(yp) (see 
equation (B.6), p. 288). Since, cov(Yp) = HI cOV(y)HI = a2 HI, 

MSE(yp) = E[(yp - Xf3)(yP - Xf3)'J 

= cov(Yp) + Bias (Yp)Bias (yp)' = a2 HI + (1 - HdXf3f3' X'(1 - Hd. 

Therefore, the trace TMSE(yp) of the MSE matrix, which is the sum of 
the mean square errors of each component of yp, is 

since tr(HI) = p. 
Let 

Jp = TMSE(Yp)/a2 = p + 13' X'(I - HI)Xf3/a2 , 

which, using (11.5), can be estimated by 

RSSp ( ) RSSp ( ) C = -- - n - p + p = -- - n - 2p . 
P 8 2 8 2 

This is known as Mallows' Cp statistic (see Mallows, 1973). From the dis­
cussion of (11.8) it follows that, if bias is close to zero, Cp should usually 
be close to p. 

11.3 Variable Selection Procedures 

The purpose of variable selection procedures is to select or help select from 
the total number k of candidate variables a smaller subset of, say, p - 1 
variables. There are two types of such procedures: those that help choose 
a subset by presenting several if not all possible combinations of variables 
with corresponding values of Cp , 8~, R~ and possibly other statistics, and 
those that pretty much do the selecting by presenting to the analyst very 
few (frequently one) subsets of variables for each value of p - 1. As we have 
already mentioned, in many situations there is rarely one obviously best 
equation and the near winners are almost as good. Therefore, we prefer the 
former approach, which we have called the search over all possible subsets. 
It has also been called the best subset regression. However, such methods 
have voracious appetites for computer time, so that when computer time is 
at a premium, particularly if there are a large number of variables to select 
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from, other methods might be necessary. Of these, the most popular is the 
stepwise procedure discussed in Section 11.3.2. Draper and Smith (1981) 
give a fuller discussion of variable search than we do but their ultimate 
recommendation is somewhat different. 

11.3.1 SEARCH OVER ALL POSSIBLE SUBSETS 

As the name implies, the search over all possible subsets of independent 
variables allows us to examine all regression equations constructed out of 
a given list of variables, along with some measure of fit for each. In our 
opinion, this procedure is the most useful, particularly if the number of 
variables is not too large. At the present time, a search over 20 variables 
is easily feasible on a mainframe computer, although new developments in 
compiler technology and in supercomputers will soon make it possible to 
computationally handle much larger numbers of variables. Even now, for 
large numbers of variables, one may force inclusion of a predetermined list 
of the variables in all models and search over only the remaining variables. 
(It is perhaps worth mentioning that computer packages do not actually fit 
each possible model separately; they use a 'short-cut' method, frequently 
one based on a procedure given in Furnival and Wilson, 1974, or see Seber, 
1977, Chapter 11.) 

A difficulty with this procedure stems from the prospect of having to 
examine huge computer outputs. For example, if even one line is devoted 
to each combination of variables, 20 variables would necessitate over a 
million lines. Therefore, several of the packages at least allow the user to 
use some criterion to eliminate combinations of variables that can be ruled 
out a priori. For example, SAS PROC RSQUARE allows one to choose to 
be printed for each p only the 'best' (based on R2) m models and to put 
bounds on the number of variables p. In BMDp1 (see Dixon, 1985) the 
user can choose among R2, R~ and Cp as the determinant of 'best' and 
ask that only the 'best' m models of any specified size p - 1 along with 
the 'best' model of each size be printed. The Linear Least Squares Curve 
Fitting Program, which is a companion to Daniel and Wood (1980), uses 
Cp as the only means for culling and shows a plot of Cp's against p. 

The PRESS (acronym for PREdiction Sum of Squares) statistic, first 
presented by Allen (1971), is another statistic that might be used to com­
pare different models. It is defined as L~=l e~,_l where ei,-l is as in equa­
tion (8.12) on p. 161. For each combination of variables, this provides a 
composite measure of how well it would predict each of the observations 
had the observation been left out when parameters were estimated. Several 
other measures also exist - see, for example Amemiya (1980), Judge et al. 
(1985), and Hocking (1976). However, nearly all of them eventually reduce 

1 BMDP Statistical Software Package is a registered trademark of BMDP Statistical 
Software Inc., Los Angeles, CA 
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to relatively simple functions of n, p, 8~, 8 2 and R~ (see SAS, 1985b, p. 
715-16) ~ as, indeed, does Cpo 

As will be apparent from Section 11.4, we somewhat favor Cp as a cri­
terion for an initial selection. However, two points should be noted about 
it. First, when using it, we need to assume that the model with the entire 
list of independent variables included is unbiased. Second, Cp measures the 
bias in predicteds YP from the abbreviated model, and these predicteds may 
not reveal the extent of the bias in estimates of certain future observations 
(see Example 10.1, p. 220). Whatever criterion statistic is used, in practice 
one sets bounds in such a way that the subset of models presented includes 
all those one would seriously consider. 

Boyce et al. (1974) describe a very flexible program which can be used 
for the search over all possible subsets, although the primary purpose of the 
program is to search through all possible combinations of a given number 
of variables and identify the one with the highest R2. The program can be 
obtained by writing to the authors of that monograph. 

11.3.2 STEPWISE PROCEDURES 

Of the stepwise procedures, the only one commonly used in actual appli­
cations is the stepwise procedure. Lest this sound silly, we point out that 
among stepwise procedures, there is one called the stepwise procedure. We 
also discuss the backward elimination procedure and the forward selection 
procedure, but primarily as an aid to the discussion of the stepwise proce­
dure. Some stepwise procedures are not discussed here. Among the more 
interesting ones are the MAXR and the MINR procedures given in SAS 
PROC STEPWISE (see also Myers, 1986). 

THE BACKWARD ELIMINATION PROCEDURES 

Backward elimination procedures start with all variables in the model and 
eliminate the less important ones one by one. A partially manual version 
consists of removing one or two variables with low t-values, rerunning, re­
moving some more variables, etc. Such a manual method does not work 
too badly when the researcher has a good understanding of the underlying 
relationship. However, it is tedious, and an automated version is available. 
Mechanically it works the same way but, as with most automated proce­
dures, we pay for the convenience of automation by having to use preset 
selection criteria. The procedure computes the partial F's corresponding 
to each variable, given the list of variables included in the model at that 
step. The partial F statistic (sometimes called 'F to remove') is the square 
of the t statistic corresponding to each variable. Hence the probabilities 
obtained and the decisions taken are identical to using the t. If the lowest 
F value falls below a preset number (the 100 x a per cent point for the F 
distribution with the appropriate degrees of freedom, where a is either set 



11.3. Variable Selection Procedures 241 

by the analyst or by the computer package) the corresponding variable is 
deleted. 

After each variable is deleted, partial F's are recomputed and the entire 
step is repeated with the variables still remaining in the model. The pro­
cedure stops when no partial F falls below the appropriate preset number. 

While most users pay little attention to these preset numbers and use 
only the default values supplied by the computer package (for SAS a is 
.1), it is perhaps appropriate to match the number to the purpose of the 
analysis. At each step, the minimum value of partial F over all variables 
still in the model is computed. Hence, if the test is performed at the 100 x a 
per cent level, the actual probability of including one variable when in fact 
it has no effect on the dependent variable is much higher than a. Therefore, 
if one wishes to be particularly careful about not including inappropriate 
variables, one might wish to set very Iowa's. On the other hand, if one 
wishes the model to lean towards inclusivity rather than exclusivity, as one 
would if prediction was the main purpose for the model, a higher value of 
a is desirable (see also Forsythe, 1979, p. 855). 

Apart from the problem of providing an inadequate list of models for 
the analyst to choose from, there is one further problem with backward 
elimination. Suppose we have three independent variables Xl, X2, X3, where 
Xl is highly correlated with X2 and X3 and also with y and we would like 
to have Xl in the final model - at least for parsimony. But being highly 
correlated with both X2 and x3, Xl would have a large standard error and 
consequently a low t-value and a low partial F-value. As a result, it may 
get deleted early and we would never see it again. 

THE FORWARD SELECTION PROCEDURE 

The forward selection procedure works in the opposite way to the back­
ward elimination procedures. It starts with no variable in the model and 
first selects that Xj which has the highest correlation with y. Subsequent 
selections are based on partial correlations, given the variables already se­
lected. The partial correlation of y and Xj given Xjll ... , Xj., written as 
rYXj ,Xi! ... Xj.' is the correlation between 

1. the residuals obtained after regressing y on xh, ... , Xj., and 

2. the residuals obtained after regressing Xj on Xjll ... , Xj •• 

Clearly, the partial correlation measures the relationship between y and Xj 

after the linear effects of the other variables have been removed. 
At every step, the partial F-value is computed for the variable just se­

lected, given that variables previously selected are already in the model 
(such a partial F is called a 'sequential F' or sometimes 'F to enter'). If this 
sequential F-value falls below a preset number (e.g., the a-point of the ap­
propriate F distribution - the default value of a in SAS is .5) the variable 
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is deleted and another one is sought. If no suitable variable is found or if all 
the variables are in the model, the procedure stops. SAS uses a variation 
in which, instead of the partial correlations, the partial F's are computed 
for each variable not in the model. If the highest of the F's computed is 
high enough, the variable is included; otherwise the procedure stops. 

A problem with forward selection is the reverse of the one for the back­
ward selection. Suppose that of the highly correlated variables XI,X2 and 
X3, we want X2 and X3 in the model because together they provide a better 
fit. But Xl may enter the model first and prevent the others from getting 
in. Because of such problems, these procedures are now of primarily ped­
agogical or historical interest, having been replaced in actual use by the 
stepwise procedure and the all possible subsets search. 

THE STEPWISE PROCEDURE 

The stepwise procedure is actually a combination of the two procedures 
just described. Like the forward selection procedure, it starts with no in­
dependent variable and selects variables one by one to enter the model 
in much the same way. But after each new variable is entered, the step­
wise procedure examines every variable already in the model to check if it 
should be deleted, just as in a backward elimination step. Typically, titiJ 
significance levels of F for both entry and removal are set differently than 
for the forward selection and backward elimination methods. It would be 
counter-productive to have a less stringent criterion for entry and a more 
stringent criterion for removal, since then we would constantly be pick­
ing up variables and then dropping them. SAS uses a default value of .15 
for both entry and exit. As for the forward selection procedure, SPSS-X2 
(SPSS, 1986) permits, as an additional criterion, a tolerance level (e.g., 
TOLj 2: .01) to be specified which needs to be satisfied for a variable to be 
considered (see Section 10.3.1, p. 222 for a definition of tolerance). 

It is generally accepted that the stepwise procedure is vastly superior to 
the other stepwise procedures. But if the independent variables are highly 
correlated, the problems associated with the other stepwise procedures can 
remain (see Example 11.1 below; also see Boyce et al., 1974). Like the 
forward selection and backward elimination procedures, usually only one 
equation is presented at each step. This makes it difficult for the analyst 
to use his or her intuition, even though most stepwise procedures allow the 
user to specify a list of variables to be always included. 

2SPSS-X is a trademark of SPSS, Inc., Chicago, IL. 
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11.3.3 STAGEWISE AND MODIFIED STAGEWISE 

PROCEDURES 

In stagewise regression the decision to append an additional independent 
variable is made on the basis of plots of the residuals (from a regression 
of the dependent variable against all variables already included) against 
variables which are candidates for inclusion. In the modified stagewise pro­
cedure the plot considered is that of 

1. the residuals obtained after regressing y on xii' ... , Xj. against 

2. the residuals obtained after regressing Xj on xii' . .. , Xj., 

where xii' ... ' Xj. are the variables already in the model. Plots of this 
latter kind are called added variable plots, partial regression plots, partial 
regression leverage plots or simply partial plots. 

In the case of the stagewise procedure, the slope obtained from applying 
least squares to the residuals is not a least squares estimate in the sense 
that, if the candidate variable is included in the model and least squares is 
applied to the resultant multiple regression model, we would get a different 
estimate for its coefficient. In the case of the modified stagewise procedure 
(without intercept) the estimates are LS estimates (see Exercise 11.1, also 
Mosteller and Thkey, 1977, p. 374 et seq.). 

Modified stagewise least squares might appear to resemble a stepwise 
technique. But actually they are very different largely because of the way 
they are practiced. Stagewise and modified stagewise methods are essen­
tially manual techniques - perhaps computer aided but nonetheless man­
ual in essence. At every stage, transformations may be made and outliers 
dealt with and perhaps even weighting performed. Several examples of what 
we have called a modified stagewise approach can be found in Mosteller and 
Thkey (1977, see chapter 12 et seq.). 

It might be mentioned in passing that some analysts find partial plots 
valuable for the identification of outliers and influential points (see Chat­
terjee and Hadi, 1986, Cook and Weisberg, 1982, Belsley, Kuh and Welsch, 
1980). 

11.4 Examples 

Example 11.1 
The data shown in Exhibit 11.1 are essentially made up by the authors. The 
independent variable Xl has values which are the same as an independent 
variable in a data set in the authors' possession, except that they have been 
divided by 10 to make them more compatible with the size of X2, which 
consists of pseudo-random numbers between 0 and 1. X3 is Xl + X2 with 


