10.1 Simple Linear Regression

SIMPLE LINEAR REGRESSION MODEL

Given n observations of the explanatory variable x and
the response variable y,
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the statistical model for simple linear regression states
that the observed response y; when the explanatory vari-
able takes the value x; is

yi=PBo+Pr1xi+ €
Here, By + f1x; is the mean response when x = x;. The

deviations €; are assumed to be independent and Nor-
mally distributed with mean O and standard deviation o.

The parameters of the model are 3, 81, and o.

Using the formulas from Cflapter 2-(page 112), the slope
of the least-squares line is
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and the intercept is

The predicted value of y for a given value x* of x is the
point on the least-squares line §7=b0+b1x *. This is an
unbiased estimator of the mean response x, when x = x*. The
residual is

e; = observed response — predicted response

=Yi~Yi
=i~ by —bx;



The residuals e; correspond to the linear regression model
deviations €;. The e; sum to 0, and the €; come from a popula-
tion with mean 0. Because we do not observe the €;, we use
the residuals to check the model assumptions of the €;.
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model standard deviation o

We average by dividing the sum by n — 2 in order to make 52
an unbiased estimate of ¢ (the sample variance of n observa-
tions uses the divisor n — 1 for this same reason). The quantity
n — 2 is called the degrees of freedom for s2. The estimate of
the model standard deviation o is given by
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LINEAR REGRESSION MODEL CONDI-
TIONS

To use the least-squares line as a basis for inference about

a population, each of the following conditions should be
approximately met:

e The sample is an SRS from the population.

e There a linear relationship between x and y.

e The standard deviation of the responses y about the
population regression line is the same for all x.

e The model deviations are Normally distributed.



Confidence intervals and signifi-
cance tests

Chapter 7 presented confidence intervals and significance
tests for means and differences in means. In each case, infer-
ence rested on the standard errors of estimates and on ¢ distri-

butions. Inference in simple linear regression is similar in
principle. For example, the confidence intervals have the form

where #* is a critical point of a ¢ distribution. The formulas for
the estimate and standard error, however, are more complicat-
ed.

CONFIDENCE INTERVAL AND SIGNIFI-
CANCE TEST FOR THE REGRESSION
SLOPE
Alevel C confidence interval for the slope 3 is

b t*SEbl

In this expression, ¢* is the value for the #(n — 2) density
curve with area C between —* and £*.

To test the hypothesis Hy: 81 =0, compute the test statis-
tic

The degrees of freedom are n — 2. In terms of a random
variable T having the #(n — 2) distribution, the P-value for
a test of H() against

H:B,>0 is P(T=10)

t
H;:B, <0 is P(T=1¢) /\
t

Ha By #0 is 2P(T=t|)
it



EXAMPLE 10.5

Statistical software output, continued. The com-
puter outputs in Figure 10.4 for the physical activity study
contain the information needed for inference about the regres-
sion slope and intercept. Let’s look at the JMP output. The

column labeled “Std Error” gives the standard errors of the
estimates. The value of SEbl appears on the line labeled with

the variable name for the explanatory variable, PA. Rounding
to three decimal places, it is given as 0.158. In a summary, we
would report that the regression coefficient for the average
number of steps per day is —0.655 with a standard error of
0.158.

The ¢ statistic and P-value for the test of Hy: B1 = 0
against the two-sided alternative H,: 81 # 0 appear in the col-
umns labeled “t Ratio” and “Prob>Itl.” We can verify the ¢ cal-
culation from the formula for the standardized estimate:

by _ -0.654696 _
SE, 0158336

t= -4.13

The P-value is given as <0.0001. The other outputs in Figure
10.4 also indicate that the P-value is very small. Less than one
chance in 10,000 is sufficiently small for us to decisively
reject the null hypothesis.



EXAMPLE 10.6

Confidence interval for the slope. A confidence
interval for 1 requires a critical value #* from the #(n — 2) =
t(98) distribution. In Table D, there are entries for 80 and 100
degrees of freedom. The values for these rows are very simi-
lar. To be conservative, we will use the larger critical value,

for 80 degrees of freedom. Find the confidence level values at
the bottom of the table. In the 95% confidence column, the
entry for 80 degrees of freedom is #* = 1.990.

To compute the 95% confidence interval for B, we com-
bine the estimate of the slope with the margin of error:

by+£1%SE, =-0.655z(1.990)(0.158)
= —0.655 + 0.314

The interval is (-0.969, —0.341). As expected, this is slightly
wider than the interval given by software (see Excel output in
Figure 10.4). We estimate that, on average, an increase of
1000 steps per day is associated with a decrease in BMI of
between 0.341 and 0.969 kg/m?.

CONFIDENCE INTERVAL FOR A MEAN
RESPONSE

Alevel C confidence interval for the mean response x,,
when x takes the value x* is

fzyit*SEA
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where #* is the value for the #(n — 2) density curve with
area C between —t* and r*.



PREDICTION INTERVAL FOR A FUTURE
OBSERVATION

A level C prediction interval for a future observation
on the response variable y from the subpopulation corre-
sponding to x* is

}it*SEA
y

where ¢* is the value for the #(n — 2) density curve with
area C between —t* and r*.

SECTION 10.1 SUMMARY

e The statistical model for simple linear regression
assumes that the means of the response variable y fall on
a line when plotted against x, with the observed y’s vary-
ing Normally about these means. For n observations, this
model can be written

yi=Po+Pr1xi + €
wherei=1,2,...,n, and the €; are assumed to be inde-
pendent and Normally distributed with mean O and stan-
dard deviation 0. Here By + Bix; is the mean response

when x = x;. The parameters of the model are B, 81,
and o.

e The population regression line intercept and slope, £
and f31, are estimated by the intercept and slope of the
least-squares regression line, by and 1. The model
standard deviation o is estimated by
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where the e; are the residuals




€ =YiTYi
e Prior to inference, always examine the residuals for Nor-
mality, constant variance, and any other remaining pat-
terns in the data. Plots of the residuals both against the
case number and against the explanatory variable are
commonly part of this examination. Scatterplot
smoothers are helpful in detecting patterns in these plots.

¢ Alevel C confidence interval for £ is
b, +1*SE,
where t* is the value for the #(n — 2) density curve with
area C between —t* and £*.
e The test of the hypothesis Hj: 81 =0 is based on the ¢
statistic

t= Ebl

and the t(n — 2) distribution. This tests whether there is a
straight-line relationship between y and x. There are simi-
lar formulas for confidence intervals and tests for S, but
these are meaningful only in special cases.

e The estimated mean response for the subpopulation cor-
responding to the value x* of the explanatory variable is



2 *
Ky =by+bx
e Alevel C confidence interval for the mean response is
24 y £t *SE.
7

where t* is the value for the #(n — 2) density curve with
area C between —£* and r*.

e The estimated value of the response variable y for a
future observation from the subpopulation corresponding
to the value x* of the explanatory variable is

A
y=by+bx"*

e Alevel C prediction interval for the estimated response

18

)Az + ¢ *SE.
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where r* is the value for the #(n — 2) density curve with
area C between —t* and r*. The standard error for the pre-
diction interval is larger than the confidence interval
because it also includes the variability of the future obser-
vation around its subpopulation mean.

e Sometimes, a transformation of one or both of the vari-
ables can make their relationship linear. However, these
transformations can harm the assumptions of Normality
and constant variance, so it is important to examine the

residuals



10.2 More Detail about Simple
Linear Regression

Analysis of variance for regres-
sion
analysis of variance

The usual computer output for regression includes additional
calculations called analysis of variance. Analysis of vari-
ance, often abbreviated ANOVA, is essential for multiple
regression (Chapter 11) and for comparing several means
(Chapters 12 and 13). Analysis of variance summarizes infor-
mation about the sources of variation in the data. It is based
on the

DATA = FIT + RESIDUAL
framework (page 560).

The total variation in the response y is expressed by the
deviations y; —y. If these deviations were all 0, all observa-
tions would be equal and there would be no variation in the
response. There are two reasons the individual observations y;
are not all equal to their mean y.

1. The responses y; correspond to different values of the
explanatory variable x and will differ because of that. The

fitted value 3; ; estimates the mean response for x;. The
differences 3; ; —3’ reflect the variation in mean response
due to differences in the x;. This variation is accounted
for by the regression line because the §: ’s lie exactly on
the line.

2. Individual observations will vary about their mean
because of variation within the subpopulation of
responses for a fixed x;. This variation is represented by
the residuals y; — 31,- that record the scatter of the actual
observations about the fitted line.

The overall deviation of any y observation from the mean of
the y’s is the sum of these two deviations:

()’,‘ _3’) = ()’i _3’) + ()’,’ _yi)
In terms of deviations, this equation expresses the idea that
DATA = FIT + RESIDUAL.
Several times, we have measured variation by an average
of squared deviations. If we square each of the preceding

three deviations and then sum over all n observations, it can
be shown that the sums of squares add:

- A2 A2
G- =20 -0+ 0 =)
We rewrite this equation as



SST = SSM + SSE

where

SST = ¥ (3, -»°*

SSM =Y (3; -»)°

SSE = ¥ (y; - ¥)>
sum of squares

The SS in each abbreviation stands for sum of squares, and
the T, M, and E stand for total, model, and error, respectively.
(“Error” here stands for deviations from the line, which might
better be called “residual” or “unexplained variation.”) The
total variation, as expressed by SST, is the sum of the varia-
tion due to the straight-line model (SSM) and the variation
due to deviations from this model (SSE). This partition of the
variation in the data between two sources is the heart of
analysis of variance.

If Hy: f1 = 0 were true, there would be no subpopulations,
and all of the y’s should be viewed as coming from a single
population with mean x,. The variation of the y’s would then

be described by the sample variance

D) E()’,‘ _3’)2
YT T

The numerator in this expression is SST. The denominator is
the total degrees of freedom, or simply DFT.

¢
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degrees of freedom, p. 40

Just as the total sum of squares SST is the sum of SSM

and SSE, the total degrees of freedom DFT is the sum of

D

FM and DFE, the degrees of freedom for the model and for

the error:

DFT = DFM + DFE

The model has one explanatory variable x, so the degrees of
freedom for this source are DFM = 1. Because DFT =n -1,
this leaves DFE = n — 2 as the degrees of freedom for error.

mean square

For each source, the ratio of the sum of squares to the

degrees of freedom is called the mean square, or simply MS.
The general formula for a mean square is



_ sum of squares
~ degrees of freedom

Each mean square is an average squared deviation. MST is
just sg, the sample variance that we would calculate if all of
the data came from a single population. MSE is also familiar
to us:

MS

ARND,
MSE = 52 = 20 =Y
n-—2

It is our estimate of 02, the variance about the population
regression line.

SUMS OF SQUARES, DEGREES OF
FREEDOM, AND MEAN SQUARES

Sums of squares represent variation present in the
responses. They are calculated by summing squared devi-
ations. Analysis of variance partitions the total variation
between two sources.

The sums of squares are related by the formula
SST = SSM + SSE



That is, the total variation is partitioned into two parts,
one due to the model and one due to deviations from the
model.

Degrees of freedom are associated with each sum of
squares. They are related in the same way:

DFT = DFM + DFE

To calculate mean squares, use the formula
sum of squares

MS =
degrees of freedom

interpretation of r

In Section 2.4 (page 116), we noted that 72 is the fraction
of variation in the values of y that is explained by the least-
squares regression of y on x. The sums of squares make this
interpretation precise. Recall that SST = SSM + SSE. It is an
algebraic fact that

2 _SSM _ G-y’
ST 3, -»)?

Because SST is the total variation in y and SSM is the varia-

tion due to the regression of y on x, this equation is the precise
statement of the fact that r2 is the fraction of variation in y

explained by x in the linear regression.



Summary statistics for gestational age study.
We start by making a table with the mean and standard devia-
tion for each of the variables, the correlation, and the sample
size. These calculations should be familiar from Chapters 1
and 2. Here is the summary:

Standard Corre- Sample

Variable Mean deviation lation size
Diameter x =12.5 s,=836062 r= n=6
0.87699

Gestational y = 26.66667 s, = 8.75595
age

These quantities are the building blocks for our calculations.

We will need one additional quantity for the calculations
to follow. It is the expression ) (x; —x)2. We obtain this
quantity as an intermediate step when we calculate s,. You
could also find it using the fact that
Y (x;, —x)>=(n—1)s2. You should verify that the value
for our example is

Y(x-x)2=(2-125)2+(6-125)2+. . . +(23 - 12.5)?

Our first task is to find the least-squares line. This is easy
with the building blocks that we have assembled.



Computing the least-squares regression line.
The slope of the least-squares line is

Sy

bl =r—

Sx
8.75595
=0.876
998.36062

= 0.91846

The intercept is

by =y —bx
= 26.66667 — (0.91846) (12.5)
= 15.18592

The equation of the least-squares regression line is therefore

y = 15.1859 + 0.9185x
This is the line shown in Figure 10.16.

We now have estimates of the first two parameters, Sy and
B1, of our linear regression model. Next, we find the estimate
of the third parameter, o: the standard deviation s about the
fitted line. To do this we need to find the predicted values and
then the residuals.

Computing the predicted values and residu-
als. The first observation is a diameter of x = 2. The corre-
sponding predicted value of gestational age is

3’1 =by+byx,
= 15.1859 + (0.9185)(2)
= 17.023

and the residual is

€L =N~
=16 — (17.023)
=-1.023

The residuals for the other diameters are calculated in the
same way. They are —2.697, 2.548, 4.955, —6.474 and 2.689,
respectively. Notice that the sum of these six residuals is zero
(except for some roundoff error). When doing these calcula-
tions by hand, it is always helpful to check that the sum of the



residuals is zero.

EXAMPLE 10.20

Computing s 2. The estimate of o2 is s2, the sum of the
squares of the residuals divided by n — 2. The estimated stan-
dard deviation about the line is the square root of this quanti-

ty.

- Zei2
n-2
_(-1.023)2 4 (-2.697)% + . . . +(2.689)2
B 4
=122.127

So the estimate of the standard deviation about the line is
s = v\,f‘22.12702 =4.704

Inference for slope and intercept Confidence intervals
and significance tests for the slope B; and intercept B of the
population regression line make use of the estimates b and b
and their standard errors. Some algebra and the rules for vari-
ances establishes that the standard deviation of by is

— (o3
'\:'Z (x; = %)

Similarly, the standard deviation of b is

O'bl

1 x>
. =0 ‘\_+—_

To estimate these standard deviations, we need only replace o
by its estimate s.



STANDARD ERRORS FOR ESTIMATED
REGRESSION COEFFICIENTS

The standard error of the slope b; of the least-squares
regression line is

SEbl = 3

‘\‘:“'Z (x; —x)°
The standard error of the intercept b is

.' -2
SEb =35 |'|—+ e
0

\l’n Y (x;—x)?

Testing the slope. First we need the standard error of
the estimated slope:

)
SEbI =

\ ¥ (x-x)°
4.704
=0.2516

To test

Ho: ,31 =0
H,: ﬂl #0
calculate the ¢ statistic:

Using Table D with n — 2 = 4 degree of freedom, we con-
clude that 0.02 < P < 0.04. The exact P-value obtained from
software is 0.022. The data provide evidence in favor of a lin-
ear relationship between gestational age and umbilical cord

diameter (¢ = 3.65, df = 4,0.02 < P < 0.04).



Computing a 95% confidence interval for the
slope. Let’s find a 95% confidence interval for the slope 3.
The degrees of freedom are n — 2 = 4, so #* from Table D is
2.776. We compute

by £1*SE, =09185+(2.776)(0.2516)
=0.9185 + 0.6984

The interval is (0.220, 1.617). For each additional millimeter
in diameter, the gestational age of the fetus is expected to be
0.220 to 1.617 weeks older.

In this example, the intercept B does not have a meaning-

ful interpretation. An umbilical cord diameter of zero mil-
limeters is not realistic. For problems where inference for
is appropriate, the calculations are performed in the same way
as those for 1. Note that there is a different formula for the
standard error, however.

Confidence intervals for the mean response and
prediction intervals for a future observation When
we substitute a particular value x* of the explanatory variable
into the regression equation and obtain a value of ’)\:, we can
view the result in two ways:

1. We have estimated the mean response /.

2. We have predicted a future value of the response y.

The margins of error for these two uses are often quite differ-
ent. Prediction intervals for an individual response are wider
than confidence intervals for estimating a mean response. We
now proceed with the details of these calculations. Once
again, standard errors are the essential quantities. And once
again, these standard errors are multiples of s, our basic mea-
sure of the variability of the responses about the fitted line.



STANDARD ERRORS FOR ;i AND Y

The standard error of ;4 is

- -
| * _
SE, =5 ;'% + u

® \“ ;- x)?
The standard error for predicting an individual response
y is

1 (*=x)2

SEA=S “‘1+_+ =
y | n Z(xi_x)Z

\

Computing a confidence interval for p. Let’s find
a 95% confidence interval for the average gestational age
when the umbilical cord diameter is 10 millimeters. The esti-
mated mean age is

p =by+bx
= 15.1859 + (0.9185)(10)
=24.371

The standard error is

c SR
© \“ (% —x)
[ _ 2
_ 4704, 4 100~ 125)
\6 349.5
=2.021

To find the 95% confidence interval, we compute

p+1t*SE. = 24371+ (2.776)(2.021)
H
= 24.371 +5.610

The interval is 18.761 to 29.981 weeks of age. This is a pretty
wide interval given gestation lasts for about 40 weeks.

Calculations for the prediction intervals are similar. The
only difference is the use of the formula for SE§ in place of

SE. . This results in a much wider interval. In fact, the inter-

H
val is slightly more than 28 weeks in width. Even though a
linear relationship was found statistically significant, it does



not appear umbilical cord diameter is a precise predictor of
gestational age.

SECTION 10.2 SUMMARY

e The ANOVA table for a linear regression gives the
degrees of freedom, sum of squares, and mean squares
for the model, error, and total sources of variation. The
ANOVA F statistic is the ratio MSM/MSE. Under H:

B1 =0, this statistic has an F(1, n — 2) distribution and is
used to test H versus the two-sided alternative.

e The square of the sample correlation can be expressed
as

2= SSM
SST
and is interpreted as the proportion of the variability in
the response variable y that is explained by the explana-
tory variable x in the linear regression.

e The standard errors for by and b are

1 x2
SEb =5 IT

‘ \ N ¥(x;—x)?

SEb, =+
\ Z(x,' _x)2



e The standard error that we use for a confidence inter-
val for the estimated mean response for the subpopula-
tion corresponding to the value x* of the explanatory
variable is

* _ 2
SE. =5 ’ll + (x—x_)
a \ Z (x,' -X ) .
e The standard error that we use for a prediction inter-

val for a future observation from the subpopulation corre-
sponding to the value x* of the explanatory variable is

¥ _ _\2
SE. =5 1+%+u
Y \ Z(xi_x)z

e When the variables y and x are jointly Normal, the sam-
ple correlation is an estimate of the population correla-
tion o. The test of Hy: o =0 is based on the £ statistic

which has a #(n — 2) distribution under Hy. This test sta-

tistic is numerically identical to the ¢ statistic used to test
H(): ,31 =0.



