7.1 Inference for the Mean of a Population

When the standard deviation of a statistic is estimated
from the data, the result is called the standard error of
the statistic. The standard error of the sample mean is

8

SEz = %

In the previous chapter, the standardized sample mean,
or one-sample z statistic,

2=

However, when we substitute the standard error s/4/n for

the standard deviation of T, the statistic does not have a
Normal distribution. It has a distribution that is new to us,
called a ¢ distribution.

THE t DISTRIBUTIONS

Suppose that an SRS of size n is drawn from an N(u, o)
population. Then the one-sample 7 statistic

t = 28

T

has the 7 distribution with » — 1 degrees of freedom.

THE ONE-SAMPLE t CONFIDENCE
INTERVAL

Suppose that an SRS of size »n is drawn from a
population having unknown mean u. A level C
confidence interval for y is

T tt* é
where 7* is the value for the #(» — 1) density curve with
area C between —* and r*. The quantity
t* T;ﬁ
is the margin of error. The confidence level is exactly

C when the population distribution is Normal and is
approximately correct for large » in other cases.



Watching traditional television. The Nielsen
Company is a global information and media company and
one of the leading suppliers of media information. In their
annual Total Audience Report, the Nielsen Company states
that adults age 18 to 24 years old average 18.5 hours per
week watching traditional television." Does this average
seem reasonable for college students? They tend to watch a
lot of television, but given their unusual schedules, they
may be more likely to binge-watch or stream episodes after
they air. To investigate, let’s construct a 95% confidence
interval for the average time (hours per week) spent
watching traditional television among full-time U.S. college
students. We draw the following SRS of size 8 from this
population:

3.016.510.540.55.533.50.06.5

The sample mean is

=145

—  3.0+165+...46.5
T = 8

and the standard deviation is

. \/ (3.0-1452+(165-1457+. . +(6.5-145)
§= 51

=14.854

with degrees of freedom # — 1 = 7. The standard error is
SE- = s//n = 14.854/+/8 = 5.252

From Table D, we find * = 2.365. The 95% confidence
interval is

—_ x 8 14894
T+t \_ﬁ 14.5:&2.3657

= 145+ (2.365)(5.252)
= 145412421
= (2.08, 26.92)

We are 95% confident that among U.S. college students
the average time spent watching traditional television is
between 2.1 and 26.9 hours per week.

df=7
r* 1.895 2.365 2.517
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FIGURE 7.2 Normal quantile plot of data, Example 7.1.

In this example, we gave the interval (2.1, 26.9) hours
per week as our answer. Sometimes, we prefer to report the
mean and margin of error: the mean time is 14.5 hours per
week with a margin of error of 12.4 hours per week. This is



THE ONE-SAMPLE t TEST

Suppose that an SRS of size » is drawn from a
population having unknown mean u. To test the
hypothesis Hy: 4 = pp based on an SRS of size n,
compute the one-sample ¢ statistic

t — L=y
s/\h

In terms of a random variable 7 having the #(n — 1)
distribution, the P-value for a test of Hj against

Hi:p>py is P(T=1)
H:p<p, is P(T=1)

Hi:p#py is 2P(T=|t)

bbb

These P-values are exact if the population distribution
is Normal and are approximately correct for large » in
other cases.

Significance test for watching traditional
television. We want to test whether the average time that
U.S. college students spend watching traditional television
differs from the reported overall U.S. average of 18- to 24-
year-olds at the 0.05 significance level. Specifically, we
want to test

Ho: = 18.5
Hg: o #18.5

Recall that n = 8, T = 14.5, and s = 14.854. The ¢
test statistic is

t: T—Hy — 145—18-5
s/R 14854/4
= —0.762
df=7
» 0.25 0.20

r* 0.711 0.896




This means that the sample mean T = 14.5 is slightly more
than 0.75 standard deviations below the null hypothesized
value p = 18.5. Because the degrees of freedom are
n — 1 = 7, this ¢ statistic has the ¢ (7) distribution. Figure
7.3 shows that the P-value is 2P (T>0.762), where T has

the ¢(7) distribution. From Table D. we see that
P(T>0.711) = 0.25 and P (7T">0.896) = 0.20.

Therefore, we conclude that the P-value is between
2 x 0.20 = 0.40 and 2 x 0.25 = 0.50. Software gives the
exact value as P = (0.4711. These data are compatible with
a mean of 18.5 hours per week. Under Hj, a difference this
large or larger would occur about half the time simply due
to chance. There is not enough evidence to reject the null
hypothesis at the 0.05 level.

P =0.4711

t=-0.762 t=0.762

FIGURE 7.3 Sketch of the P-value calculation, Example
7.2.

In this example, we tested the null hypothesis y = 18.5
hours per week against the two-sided alternative pu # 18.5
hours per week because we had no prior suspicion that the
average among college students would be larger or smaller.
If we had suspected that the average would be smaller (for
example, expected more streaming of shows), we would
have used a one-sided test.

One-sided test for watching traditional

television. For the problem described in the previous
example, we want to test whether the U.S. college student
average is smaller than the overall U.S. population average.

Here we test
Ho: =185

Versus
Hg u <185



The ¢ test statistic does not change: t = —0.762. As
Figure 7.4 illustrates, however, the P-value is now
P (T < —0.762), half of the value in the previous example.
From Table D, we can determine that 0.20 < P < 0.25;
software gives the exact value as P = 0,2356. Again, there

1s not enough evidence to reject the null hypothesis in favor
of the alternative at the 0.05 significance level.

P =0.2356

t=-0.762

FIGURE 7.4 Sketch of the P-value calculation, Example
7.3.

Are the two means equivalent? Suppose the GE Healthcare
researchers state that a mean difference less than 0.20 micron is not
important. To see if the data support a mean difference within 0.00 +
0.20 micron, we construct a 90% confidence interval for the mean
difference.

The 51 differences have
T =0.0504 and s=0.6943

To assess whether there is a difference between the measurements
with and without this option, we test

Hy: =20
Hpyu#0

Here, u is the mean difference for the entire population of parts. The
null hypothesis says that there is no difference, and H, says that there is
a difference, but does not specify a direction.

The one-sample 7 statistic is

f— 20 _ _0\on
s/ 0.6043/1 51
= 0.52

The P-value is found from the #50) distribution. Remember that the
degrees of freedom are 1 less than the sample size.



Table D shows that 0.52 lies to the left of the first column entry.
This means the P-value is greater than 2(0.25) = 0.50. Software gives
the exact value P = 0.6054. There is little evidence to suggest this
option has an impact on the measurements. When reporting results, it is
usual to omit the details of routine statistical procedures; our test would
be reported in the form: “The difference in measurements was not
statistically significant (= 0.52, df =50, P=0.61).”

The standard error is
SEx =% = %45 = 0.0972
so the margin of error is
m =1t* x SEx = (1.676) (0.0972) = 0.1629

where the critical value * = 1.676 comes from Table D using 50
degrees of freedom. The confidence interval is

df=50
* 1.676 2.009
C 90% 95%

ZT+m = 0.0504 £ 0.1629

(-0.112, 0.2133)
This interval is not entirely within the 0.00 = 0.20 micron region
that the researchers state is not important. Thus, we cannot conclude at

the 5% signficance level that the two means are equivalent. Because the
observed mean difference is close to zero and well within the

“equivalent region,” the company may want to consider a larger study
to improve precision.

ONE SAMPLE TEST OF EQUIVALENCE

Suppose that an SRS of size » is drawn from a population having
unknown mean . To test, at significance level a, if ¢ is within a
range of equivalency to y, specified by the interval uo + o:

1. Compute the confidence interval with C =1 - 2a.

2. Compare this interval with the range of equivalency.
If the confidence interval falls entirely within gy = d, conclude that
(18 equivalent to . If the confidence interval is outside the

equivalency range or contains values both within and outside the
range, conclude the y is not equivalent to .



—

Fortunately, the ¢ procedures are quite robust against
non-Normality of the population except in the case of
outliers or strong skewness. Larger samples improve the
accuracy of P-values and critical values from the ¢
distributions when the population is not Normal. This is true
for two reasons:

central limit theorem, p. 298
law of large numbers, p. 250

1. The sampling distribution of the sample mean T from
a large sample is close to Normal (that’s the central
limit theorem). Normality of the individual
observations is of little concern when the sample is
large.

2. As the sample size » grows, the sample standard
deviation s will be an accurate estimate of ¢ whether or
not the population has a Normal distribution. This fact
is closely related to the law of large numbers.

» Sample size less than 15: Use t procedures if the data
are close to Normal. If the data are clearly non-Normal
or if outliers are present, do not use 7.

» Sample size at least 15 and less than 40: The t
procedures can be used except in the presence of
outliers or strong skewness.

* Large samples: The t procedures can be used even for
clearly skewed distributions when the sample is large,
roughly n > 40.

SECTION 7.1 SUMMARY

* Significance tests and confidence intervals for the
mean g of a Normal population are based on the
sample mean Z of an SRS. Because of the central limit
theorem, the resulting procedures are approximately
correct for other population distributions when the
sample is large.

* The standard error of the sample mean is

SEz = %
* The standardized sample mean, or one-sample g
statistic,
— =z
2= F

has the N(0, 1) distribution. If the standard deviation
o/+/n of T is replaced by the standard error s/,/n,

the one-sample # statistic



t= "L

s/vR
has the 7 distribution with » — 1 degrees of freedom.

* There is a ¢ distribution for every positive degrees of
freedom k. All are symmetric distributions similar in
shape to Normal distributions. The #(k) distribution
approaches the N(0, 1) distribution as & increases.

» A level C confidence interval for the mean y of a
Normal population is

T+t 2
Py

where 7* 1s the value for the #(» — 1) density curve with
area C between —* and 7*. The quantity
Tl
A
is the margin of error.
» Significance tests for Hy: i = yo are based on the 7

statistic. P-values or fixed significance levels are
computed from the #(n — 1) distribution.

» A matched pairs analysis is needed when subjects or
experimental units are matched in pairs or when there
are two measurements on each individual or

experimental unit and the question of interest concerns
the difference between the two measurements.

* The one-sample procedures are used to analyze
matched pairs data by first taking the differences
within the matched pairs to produce a single sample.

» One-sample equivalence testing assesses whether a
population mean u is practically different from a
hypothesized mean p. This test requires a threshold d,
which represents the largest difference between x and
to such that the means are considered equivalent.

* The ¢ procedures are relatively robust against non-
Normal populations. The ¢ procedures are useful for
non-Normal data when 15 < n < 40 unless the data
show outliers or strong skewness. When n>40, the ¢
procedures can be used even for clearly skewed
distributions.



7.2 Comparing Two Means

Standard

Population Variable Mean deviation
1 X1 M1 a1
2 X2 M2 a2

We want to compare the two population means, either by
giving a confidence interval for y; — y, or by testing the
hypothesis of no difference, Hy: p; = pto.

Inference is based on two independent SRSs, one from
each population. Here is the notation that describes the
samples:

Sample
Sample Sample standard
Population size mean deviation
1 n T 5]
2 1> To 52

Throughout this section, the subscripts 1 and 2 show the
population to which a parameter or a sample statistic refers.

* The mean of the difference T; — T 5 is the difference
between the means y; — i». This follows from the
addition rule for means and the fact that the mean of
any T is the same as the mean y of the population.

* The variance of the difference ; — T is the sum of
their variances, which 1s
o2 o3

1
mn Na

This follows from the addition rule for variances.
Because the samples are independent, their sample
means T and Ty are independent random variables.

If the two population distributions are both Normal,
then the distribution of Z; — Z5 1s also Normal. This
is true because each sample mean alone is Normally
distributed and because a difference between
independent Normal random variables is also Normal.



Based on information from the National Health and
Nutrition Examination Survey, we assume that the heights
(in inches) of 10-year-old girls are N(56.9, 2.8) and the
heights of 10-year-old boys are N(56.0, 3.5).”* The heights

(12 girls and 8 boys)

of the students in our class are assumed to be random
samples from these populations. The two distributions are
shown in Figure 7.11(a).

The difference Ty — Ty between the female and male
mean heights varies in different random samples. The
sampling distribution has mean

U1 — 2 =156.9—-56.0=10.9 inches

and variance
o | o
ny Ty

+ = 37

2.8 3.5
2 T s
.18

Il
[

The standard deviation of the difference in sample means is,
therefore, 4/2.18 = 1.48 inches.

If the heights vary Normally, the difference in sample
means is also Normally distributed. The distribution of the

difference in heights i1s shown in Figure 7.11(b). We
standardize T; — Ty by subtracting its mean (0.9) and
dividing by its standard deviation (1.48). Therefore, the
probability that the girls, on average, are taller than the boys
is

P(z,-T2 >0) = P ({‘“_1“235_0'9 > "f?q't?)

= P(Z >-0.61) = 0.7291

TWO-SAMPLE z STATISTIC

Suppose that T; is the mean of an SRS of size »
drawn from an N(u;, g1) population and that Z9 is the
mean of an independent SRS of size #, drawn from an
N(us, 02) population. Then the two-sample z statistic

5 = @) ()
1.3
T

has the standard Normal N(0, 1) sampling distribution.



The two-sample t procedures

Suppose now that the population standard deviations a; and
a, are not known. We estimate them by the sample standard
deviations s; and s, from our two samples. Following the
pattern of the one-sample case, we substitute the standard
errors for the standard deviations used in the two-sample z
statistic. The result is the two-sample t statistic:

t = (z1-2)- ("; 1)

2
d A
n ny

Unfortunately, this statistic does not have a ¢ distribution. A
t distribution replaces the N(0, 1) distribution only when a
single standard deviation (o) in a z statistic is replaced by its
sample standard deviation (s). In this case, we replace two
standard deviations (o) and g2) by their estimates (s; and s2),
which does not produce a statistic having a ¢ distribution.

THE TWO-SAMPLE t CONFIDENCE
INTERVAL

Suppose that an SRS of size #; is drawn from a Normal
population with unknown mean g; and that an
independent SRS of size n, is drawn from another
Normal population with unknown mean u». The
confidence interval for uy — u, given by

2 2
(B1-Ta) £t/ 2 + 2

has confidence level at least C no matter what the
population standard deviations may be. The quantity

2 2
* i 83
t 1 + g

is the margin of error. Here, 7* is the value for the #(k)
density curve with area C between —* and 7*. The
value of the degrees of freedom & is approximated by
software, or we use the smaller of n; — | and n, — 1.
Similarly, we can use either software or the
conservative approach with Table D to approximate the
value of 7*.



Group n T s
Treatment 21 51.48 11.01
Control 23 41.52 17.15

To describe the size of the treatment effect, let’s
construct a confidence interval for the difference between
the treatment group and the control group means. The

interval is

(F1—@2) £t/ + 2 = (5148 — 41.52)

* 1101 1715
4+t G + =3
=096+43]r*

The second degrees of freedom approximation uses the ¢
(20) distribution.

df=20
r* 1.725 2.086 2.197
C 0.90 0.95 0.96

Table D gives r* = 2.086. With this approximation, we
have

9.96 + (4.31 x 2.086) =9.96 £ 8.99 = (1.0, 18.9)

We estimate the mean improvement to be about 10
points, with a margin of error of almost 9 points.
Unfortunately, the data do not allow a very precise estimate
of the size of the average improvement.

THE TWO-SAMPLE ¢t SIGNIFICANCE
TEST

Suppose that an SRS of size »; is drawn from a Normal
population with unknown mean g; and that an
independent SRS of size n, is drawn from another
Normal population with unknown mean u,. To test the
hypothesis Ho: uj — u» = Ao, compute the two-sample ¢
statistic

(T1-72)-do

t =

4,9

w Ty
and use P-values or critical values for the #k)
distribution, where the degrees of freedom k either are
approximated by software or are the smaller of n; — 1
and n, — 1.



Is there an improvement? For the DRP study
described in Example 7.11 (page 437), we hope to show that
the treatment (Group 1) performs better than the control
(Group 2). For a formal significance test, the hypotheses are

Ho: py = pto
Group n x s
Treatment 21 51.48 11.01
Control 23 41.52 17.15
Hg: i = o
The two-sample 7 test statistic is
. (E 752)4)
b La
T
5148 41.52
1 = + 1 -
= 231

The P-value for the one-sided test is P(7 > 2.31). For
the second approximation, the degrees of freedom % are
equal to the smaller of

n—-1=21-1=20 and mn-1=23-1=22

df=20
P 0.02 0.01
r 2.197 2.528

Comparing 2.31 with the entries in Table D for 20
degrees of freedom, we see that P lies between 0.01 and
0.02.

The data strongly suggest that directed reading activity
improves the DRP score (= 2.31, df =20, 0.01 <P <0.02).



Timing of food intake and weight loss. There is
emerging evidence of a relationship between timing of
feeding and weight regulation. In one study, researchers
followed 402 obese or overweight individuals through a 20-
week weight-loss treatment.”® To investigate the timing of
food intake, participants were grouped into early eaters and
late eaters, based on the timing of their main meal. Here are

the summary statistics of their weight loss over the 20
weeks, in kilograms (kg):

Group n T s
Early eater 202 9.9 5.8
Late eater 200 7.7 6.1

The early eaters lost more weight on average. Can we
conclude that these two groups are not the same? Or is this
observed difference merely what we could expect to see
given the variation among participants?

While other evidence suggests that early eaters should
lose more weight, the researchers did not specify a direction
for the difference. Thus, the hypotheses are

Ho:pyr = po
Ha: py # 12

Because the samples are large, we can confidently use
the 7 procedures even though we lack the detailed data and
so cannot verify the Normality condition.

The two-sample  statistic is

The conservative approach finds the P-value by
comparing 3.71 to critical values for the #(199) distribution
because the smaller sample has 200 observations. Because
Table D does not contain a row for 199 degrees of freedom,
we will be even more conservative and use the first row in
the table with degrees of freedom less than 199. This means
we’ll use the #(100) distribution to compute the P-value.

Our calculated value of £ is larger than the p = 0.0005
entry in the table. We must double the table tail area p
because the alternative is two-sided, so we conclude that the

P-value is less than 0.001. The data give conclusive
evidence that early eaters lost more weight, on average, than
late eaters (r=3.71, df = 100, P <0.001).



df =100
p 0.0005
r* 3.390

In this example the exact P-value is very small because =
3.71 says that the observed difference in means is over 3.5
standard errors above the hypothesized difference of zero
(u1 = m2). In this study, the researchers also compared
energy intake and energy expenditure between late and
early eaters. Despite the observed weight loss difference of
2.2 kg, no significant differences in these variables were
found.

The pooled two-sample t
procedures

There is one situation in which a ¢ statistic for comparing
two means has exactly a ¢ distribution. This is when the two
Normal population distributions have the same standard
deviation. As we’ve done with other  statistics, we will first
develop the z statistic and then, from it, the 7 statistic. In this
case, notice that we need to substitute only a single standard
error when we go from the z to the r statistic. This is why
the resulting  statistic has a ¢ distribution.

Call the common—and still unknown—standard

deviation of both populations ¢. Both sample variances s%

and s% estimate 2. The best way to combine these two
estimates is to average them with weights equal to their
degrees of freedom. This gives more weight to the sample
variance from the larger sample, which is reasonable. The
resulting estimator of ¢ is

§2 — (n1—1)s2+(ny—1)s2

P ni+ns—2

pooled estimator of ¢’

This is called the pooled estimator of & because it
combines the information in both samples.

When both populations have variance ¢, the addition
rule for variances says that T; — To has variance equal to
the sum of the individual variances, which is

a o _ 2(1 1
E+E_U(E+E)
The standardized difference between means in this equal-
variance case is, therefore,

(E 1—T2 H1—Ha

1 1
LY rra

z =

This is a special two-sample z statistic for the case in which
the populations have the same . Replacing the unknown &
by the estimate s, gives a 7 statistic. The degrees of freedom

are ny + ng — 2, the sum of the degrees of freedom of the



two sample variances. This ¢ statistic is the basis of the
pooled two-sample ¢ inference procedures.

THE POOLED TWO-SAMPLE t
PROCEDURES

Suppose that an SRS of size n; is drawn from a Normal
population with unknown mean y; and that an
independent SRS of size m> is drawn from another
Normal population with unknown mean u,. Suppose
also that the two populations have the same standard
deviation. A level C confidence interval for g, — 1, is

(Tl—fg) 3E t*sp\/m

Here, t* is the value for the #(n; + n2 — 2) density curve
with area C between —* and *. The quantity

* 1 4 1
t"sp n1_+_n2

is the margin of error.

To test the hypothesis Ho: u; — yo = Ao, compute the
pooled two-sample t statistic

s~ EE) A

In terms of a random variable 7 having the #(n; + n2 —
2) distribution, the P-value for a test of Hj against

Ha:,u,l _j.L2>AQ is P(TZI)

Ha: My~ M2 < A(I is P(T = t)

phP

H{i: M1 — H2 - AO is 2P(T = |I|)
It]



Does iIncreased calcium reduce blood
pressure? Take Group | to be the calcium group and

Group 2 to be the placebo group. The evidence that calcium
lowers blood pressure more than a placebo is assessed by
testing

Ho: gy = o

Hy: > o
Here are the summary statistics for the decrease in blood
pressure:

Group Treatment n T s
1 Calcium 10 5.000 8.743
2 Placebo 11 -0.273 5.901

The calcium group shows a drop in blood pressure, and
the placebo group has a small increase. The sample standard
deviations do not rule out equal population standard
deviations. A difference this large will often arise by chance
in samples this small. We are willing to assume equal
population standard deviations. The pooled sample variance
is

s2 = (n1—1)s?+(na—1)s?
D ny+ng—2
3 2
_ {1(}1)&7&&2 DsHF _ e 4 536

so that

sp = v/54.536 = 7.385

The pooled two-sample ¢ statistic is
(z1—22)—0

1 1
Sp ny + g

5.000-(-0.203)
7.38‘3; 7ﬁc)+ﬁ
— 5283 _

= 5% —1.634

t

df=19
p 0.10 0.05
t* 1.328 1.729

The P-value is P (7>1.634), where T has the ¢(19)
distribution.

From Table D, we can see that P falls between the
a=0.10 and a = 0.05 levels. Statistical software gives
the exact value P = 0.059. The experiment found evidence
that calcium reduces blood pressure, but the evidence falls a
bit short of the traditional 5% and 1% levels.



How different are the calcium and placebo
groups? We estimate that the effect of calcium
supplementation is the difference between the sample
means of the calcium and the placebo groups,
ZT1 — Ty = 5.273 mm Hg. A 90% confidence interval for
p1 — po uses the critical value * = 1.729 from the ¢ (19)
distribution. The interval is

(B1 —F2) £ t"8py /o + o = [5.000 — (—0.273)] + (1.729)
= 5.273 £5.579

We are 90% confident that the difference in means is in
the interval (—0.306,10.852). The calcium treatment
reduced blood pressure by about 5.3 mm Hg more than a
placebo on the average, but the margin of error for this
estimate is 5.6 mm Hg.

SECTION 7.2 SUMMARY

» Significance tests and confidence intervals for the
difference between the means p; and py of two
Normal populations are based on the difference
T1 — T9 between the sample means from two
independent SRSs. Because of the central limit
theorem, the resulting procedures are approximately
correct for other population distributions when the
sample sizes are large.

* When independent SRSs of sizes n; and ny are drawn
from two Normal populations with parameters p;, o1
and o, 09 the two-sample z statistic

2= (;1 —z; —Ha

ETEe
Sl 2

has the N(0, 1) distribution.
» The two-sample ¢ statistic

does not have a ¢ distribution. However, good
approximations are available.



» Conservative inference procedures for comparing
and o are obtained from the two-sample 7 statistic by
using the ¢ (k) distribution with degrees of freedom &
equal to the smaller of ny — 1 and np — 1.

* More accurate probability values can be obtained by
estimating the degrees of freedom from the data. This
1s the usual procedure for statistical software.

* An approximate level C confidence interval for
1 — o 1s given by

Here, * is the value tfor the #(k) density curve with area
C between —t* and *, where k is computed from the
data by software or is the smaller of n; — 1 and

ny — 1. The quantity

is the margin of error.
» Significance tests for Hy : pu; — pg = Ay use the

two-sample 7 statistic

z—T3)-Ng
2
1

PR
2
3

Mg

The P-value is approximated using the ¢ (k)

distribution where £ is estimated from the data using
software or is the smaller of ny — 1 and ng — 1.

* The guidelines for practical use of two-sample ¢
procedures are similar to those for one-sample ¢
procedures. Equal sample sizes are recommended.

» [f we can assume that the two populations have equal
variances, pooled two-sample ¢ procedures can be
used. These are based on the pooled estimator

§2 — (n1—1)si+(n2—1)s3
p ni+ny—2

of the unknown common variance and the
t (n1 + ng — 2) distribution. We do not recommend

this procedure for regular use.



7.3 Additional Topics on Inference

Sample size for confidence intervals We can arrange to have
both high confidence and a small margin of error by
choosing an appropriate sample size. Let’s first focus on the
one-sample 7 confidence interval. Its margin of error is

m=t"SEz =" %

SAMPLE SIZE FOR DESIRED MARGIN OF
ERROR FOR A MEAN u

The level C confidence interval for a mean x# will have an expected
margin of error less than or equal to a specified value m when the
sample size is such that

m>t's*/y/n
Here r* 1s the critical value for confidence level C with #» — 1

degrees of freedom, and s* is the guessed value for the population
standard deviation

1. Get an 1nitial sample size by replacing * with =¥, Compute 17 =
(z*s*/m)* and round up to the nearest integer.

2. Use this sample size to obtain 7*, and check if m>t*s x //n.

3. If the requirement is satisfied, then this # is the needed sample
size. If the requirement is not satisfied, increase n by 1 and return
to Step 2.

Planning a survey of college students. In Example 7.1 (page
411), we calculated a 95% confidence interval for the mean hours per
week a college student watches traditional television. The margin of
error based on an SRS of n = 8 students was 12.42 hours. Suppose that
a new study is being planned and the goal is to have a margin of error
of five hours. How many students need to be sampled?

The sample standard deviation in Example 7.1 1s 5 = 14.854 hours.
To be conservative, we’ll guess that the population standard deviation is

17.5 hours.

1. To compute an initial n, we replace #* with z*. This results in
* g ¥ 2 . o 2
n=(22) = [MR2]" — 4706

m

Round up to get 7 =48.

2. We now check to see if this sample size satisfies the requirement
when we switch back to r*. For n = 48, we have n — 1 =47
degrees of freedom and #* = 2.011. Using this value, the expected
margin of error is

2.011(17.5) /+/48 = 5.08

This is larger than m = 5, so the requirement is not satisfied.



3. The following table summarizes these calculations for some
larger values of n.

n 1*s*/\/n

49 5.03
50 4.97
51 4.92

The requirement is first satisfied when »# = 50. Thus, we need to sample
at least #» = 50 students for the expected margin of error to be no more
than five hours.

SECTION 7.3 SUMMARY

* The sample size required to obtain a confidence interval with an
expected margin of error no larger than m for a population mean
satisfies the constraint

m>t*s*/\/n
where r* is the critical value for the desired level of confidence

with # — 1 degrees of freedom, and s* is the guessed value for the
population standard deviation.

The sample sizes necessary for a two-sample confidence interval
can be obtained using a similar constraint, but guesses of both
standard deviations and an estimate for the degrees of freedom
are required. We suggest using the smaller of 7; — 1 and n, — 1 for
degrees of freedom.

* The power of the one-sample 7 test can be calculated like that of
the - test, using an approximate value for both ¢ and s.

» The power of the two-sample ¢ test is found by first finding the
critical value for the significance test, the degrees of freedom, and
the noncentrality parameter for the alternative of interest.
These are used to calculate the power from a noncentral 7
distribution. A Normal approximation works quite well.

Calculating margins of error for various study designs and
conditions is an alternative procedure for evaluating designs.

* The sign test is a distribution-free test because it uses
probability calculations that are correct for a wide range of
population distributions.

+ The sign test for “no treatment effect”” in matched pairs counts the
number of positive differences. The P-value is computed from the
B(n, 1/2) distribution, where # is the number of non-0 differences.
The sign test is less powerful than the 7 test in cases where use of
the ¢ test is justified.



