6.1 Estimating with Confidence
The unbiasedness of an estimator concerns the center of its sampling
distribution, but questions about variation are answered by looking at its
spread. The central limit theorem says that if the entire population of
SATM scores has mean x and standard deviation o, then in repeated
SRSs of size 500, the sample mean 7 1s approximately

N (,u., (I/\/500). Let us suppose that we know that the standard

deviation o of SATM scores in our California population is ¢ = 100.
(We will see in the next chapter how to proceed when ¢ is not known.
For now, we are more interested in statistical reasoning than in details
of realistic methods.) This means that in repeated sampling the sample
mean T has an approximately Normal distribution centered at the
unknown population mean ; and a standard deviation of

a;:é%=4.5
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FIGURE 6.2 Distribution of the sample mean, Example 6.3. T lies
within £9 points of u in 95% of all samples. This also means that u is
within 9 points of T in those samples.

Now we are ready to proceed. Consider this line of thought, which
is illustrated in Figure 6.2:

* The 68-95-99.7 rule says that the probability is about 0.95 that &
will be within 9 points (that is, two standard deviations of T ) of
the population mean score f.

* To say that Z lies within 9 points of 1 is the same as saying that u
1s within 9 points of Z.

* So about 95% of all samples will contain the true x in the interval
fromz —9tox +09.



We have simply restated a fact about the sampling distribution of Z.
The language of statistical inference uses this fact about what would
happen in the long run to express our confidence in the results of any
one sample. Our sample gave T = 495. We say that we are 95%
confident that the unknown mean score for all California seniors lies
between

T —9=495-9=486
and
T+9=495+9=504

Be sure you understand the grounds for our confidence. There are
only two possibilities for our SRS:

1. The interval between 486 and 504 contains the true u.
2. The interval between 486 and 504 does not contain the true z.

We cannot know whether our sample is one of the 95% for which
the interval T = 9 contains x or one of the unlucky 5% for which it does
not contain z. The statement that we are 95% confident is shorthand for
saying, “We arrived at these numbers by a method that gives correct
results 95% of the time.”

Confidence intervals

In the setting of Example 6.3, the interval of numbers between the
values T = 9 is called a 95% confidence interval for . Like most
confidence intervals we will discuss, this one has the form

estimate = margin of error
margin of error, p. 287

The estimate (Z = 495 in this case) is our guess for the value of the
unknown parameter. The margin of error (9 here) reflects how accurate
we believe our guess is, based on the variability of the estimate, and
how confident we are that the procedure will produce an interval that
will contain the true population mean .

Figure 6.3 illustrates the behavior of 95% confidence intervals in
repeated sampling from a Normal distribution with mean . The center
of each interval (marked by a dot) is at T and varies from sample to
sample. The sampling distribution of T (also Normal) appears at the top
of the figure to show the long-term pattern of this variation.

The 95% confidence intervals, T = margin of error, from 25 SRSs
appear below the sampling distribution. The arrows on either side of the



dot (Z) span the confidence interval. All except one of the 25 intervals
contain the true value of ;. In those intervals that contain s, sometimes
1t 1s near the middle of the interval and sometimes it is closer to one of
the ends. This again reflects the variation of Z. In practice, we don’t
know the value of x, but we have a method such that, in a very large
number of samples, 95% of the confidence intervals will contain .

Density curve of ¥

FIGURE 6.3 Twenty-five samples from the same population gave
these 95% confidence intervals. In the long run, 95% of all samples
give an interval that covers . The sampling distribution of T is shown
at the top.

We can construct confidence intervals for many different
parameters based on a variety of designs for data collection. We will
learn the details of a number of these in later chapters. Two important
things about a confidence interval are common to all settings:

1. It is an interval of the form (a, b), where @ and b are numbers
computed from the sample data.

confidence level

2. It has a property called a confidence level that gives the
probability of producing an interval that contains the unknown
parameter.

Users can choose the confidence level, but 95% is the standard for
most situations. Occasionally, 90% or 99% is used. We use C to stand
for the confidence level in decimal form. For example, a 95%
confidence level corresponds to C = 0.95.



CONFIDENCE INTERVAL

A level C confidence interval for a parameter is an interval
computed from sample data by a method that has probability C of
producing an interval containing the true value of the parameter.

Confidence interval for a population
mean

central limit theorem, p. 298

We now construct a level C confidence interval for the mean y of a
population when the data are an SRS of size n. The construction is
based on the sampling distribution of the sample mean Z. This
distribution is exactly N (p,, a/ \/7_?,) when the population has the My,
o) distribution. The central limit theorem says that this same sampling
distribution is approximately correct for large samples whenever the
population mean and standard deviation are y and ¢. For now, we will
assume we are in one of these two situations. We discuss what we mean
by “large sample” after we briefly study these intervals.

Our construction of a 95% confidence interval for the mean SATM
score began by noting that any Normal distribution has probability
about 0.95 within +2 standard deviations of its mean. To construct a
level C confidence interval we first catch the central C area under a
Normal curve. That is, we must find the number =* such that any
Normal distribution has probability C within £z* standard deviations of
its mean.

Because all Normal distributions have the same standardized form.,
we can obtain everything we need from the standard Normal curve.
Figure 6.4 shows how C and z* are related. Values of -* for many
choices of C appear in the row labeled z* at the bottom of Table D.
Here are the most important entries from that row:

z¥ 1.645 1.960 2.576
C 90% 95% 99%

Notice that for 95% confidence the value 2 obtained from the 6895
—99.7 rule is replaced with the more precise 1.96.

T
—z* 0 z*

FIGURE 6.4 To construct a level C confidence interval, we must find
the number z*. The area between —z* and z* under the standard
Normal curve is C.



z*10.674 0.841 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.091 3.291

50% 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9%

Confidence level C

As Figure 6.4 reminds us, any Normal curve has probability C
between the point =* standard deviations below the mean and the point
-* standard deviations above the mean. The sample mean T has the
Normal distribution with mean y and standard deviation o//n so there

is probability C that T lies between
p—z*\—‘;ﬁ- and ;.a+z*\—‘;;—

This is exactly the same as saying that the unknown population mean x
lies between

E—z*\—%— and E—I—z*iﬁ

That is, there is probability C that the interval T + z x o/4/n contains

. This 1s our confidence interval. The estimate of the unknown u 1s 7,
and the margin of error is z % o/4/n.

CONFIDENCE INTERVAL FOR A POPULATION
MEAN

Choose an SRS of size # from a population having unknown mean
1 and known standard deviation 6. The margin of error for a level
C confidence interval for 1 is

m=z% 7"5
Here, =* is the value on the standard Normal curve with area C

between the critical points —z* and z*. The level C confidence
interval for u is

T E£m

The confidence level of this interval is exactly C when the
population distribution is Normal and is approximately C when # is
large in other cases.




How confidence intervals behave

The margin of error z*o//n for the mean of a Normal population
illustrates several important properties that are shared by all confidence
intervals 1 common use. The user chooses the confidence level, and the
margin of error follows from this choice.

Both high confidence and a small margin of error are desirable
characteristics of a confidence interval. High confidence says that our
method almost always gives correct answers. A small margin of error
says that we have pinned down the parameter quite precisely.

Suppose that in planning a study you calculate the margin of error
and decide that it is too large. Here are your choices to reduce it:

* Use a lower level of confidence (smaller C).
* Choose a larger sample size (larger n).

* Reduce o.

For most problems, you would choose a confidence level of 90%,
95%, or 99%, so z* will be 1.645, 1.960, or 2.576, respectively. Figure
6.4 shows that z* will be smaller for lower confidence (smaller C). The
bottom row of Table D also shows this. If » and ¢ are unchanged, a
smaller =* leads to a smaller margin of error.

How the confidence level affects the confidence

interval. Suppose that for the college saving fund contribution data in
Example 6.4 (page 350), we wanted 99% confidence. Table D tells us
that for 99% confidence, z* = 2.576. The margin of error for 99%
confidence based on 1593 observations is

a

m = z % V‘z&
= 2.576 —1@
= 95.71
and the 99% confidence interval is
T +tm = 1768 &+ 96
= (1672, 1864)

Requiring 99%, rather than 95%, confidence has increased the
margin of error from 37 to 96. Figure 6.6 compares the two intervals.

* Q9%
confidence

At 95%
confidence

T T T T T T 1
1600 1650 1700 1750 1800 1850 1900 1950

FIGURE 6.6 confidence intervals, Examples 6.4 and 6.6. The larger
the value of C, the wider the interval.



Choosing the sample size

A wise user of statistics never plans data collection without, at the same
time, planning the inference. You can arrange to have both high
confidence and a small margin of error. The margin of error of the
confidence interval for a population mean is
m = z* Tc;nc

Notice once again that it is the size of the sample that determines the
margin of error. The size of the population (as long as the population is
much larger than the sample) does not influence the sample size we
need.

To obtain a desired margin of error m, plug in the value of ¢ and the
value of -* for your desired confidence level, and solve for the sample
size n. Here is the result.

SAMPLE SIZE FOR DESIRED MARGIN OF
ERROR

The confidence interval for a population mean will have a specified
margin of error /7 when the sample size is

= (%)
Some cautions

c4

We have already seen that small margins of error and high confidence
can require large numbers of observations. You should also be keenly
aware that any formula for inference is correct only in specific
circumstances. If the government required statistical procedures to
carry warning labels like those on drugs. most inference methods would
have long labels. Our formula T + z*o//n for estimating a population
mean comes with the following list of warnings for the user:

* The data should be an SRS from the population. We are
completely safe if we actually did a randomization and drew an
SRS. We are not in great danger if the data can plausibly be
thought of as independent observations from a population. That is
the case in Examples 6.4 through 6.7, provided the
undergraduates and parents can be considered one population.

The formula 1s not correct for probability sampling designs more
complex than an SRS. Correct methods for other designs are
available. We will not discuss confidence intervals based on
multistage or stratified samples (page 195). If you plan such
samples, be sure that you (or your statistical consultant) know
how to carry out the inference you desire.



* There is no correct method for inference from data haphazardly
collected with bias of unknown size. Fancy formulas cannot
rescue badly produced data.

J

resistant measure, p. 30

* Because T is not a resistant measure, outliers can have a large
effect on the confidence interval. You should search for outliers
and try to correct them or justify their removal before compuiting
the interval. If the outliers cannot be removed, ask your statistical
consultant about procedures that are not sensitive to outliers.

If the sample size is small and the population is not Normal, the
true confidence level will be different from the value C used in
computing the interval. Prior to any calculations, examine your
data carefully for skewness and other signs of non-Normality.
Remember though that the interval relies only on the distribution
of T, which even for quite small sample sizes 1s much closer to
Normal than is the distribution of the individual observations.
When 7 > 15, the confidence level is not greatly disturbed by
non-Normal populations unless extreme outliers or quite strong
skewness are present. Our college fund contribution data in
Example 6.4 are very likely skewed, but because of the large
sample size, we are confident that the distribution of the sample
mean will be approximately Normal.

S

standard deviation s, p. 38

* The interval T + z*o/4/n assumes that the standard deviation ¢
of the population is known. This unrealistic requirement renders
the interval of little use in statistical practice. We will learn in the
next chapter what to do when ¢ is unknown. If, however, the
sample is large, the sample standard deviation ¢ will be close to
the unknown . The interval T + z*s/,/n is then an approximate
confidence interval for z.

The most important caution concerning confidence intervals is a
consequence of the first of these warnings. The margin of error in a
confidence interval covers only random sampling errors. The margin of
error is obtained from the sampling distribution and indicates how
much error can be expected because of chance variation in randomized
data production.

Practical difficulties such as undercoverage and nonresponse in a
sample survey cause additional errors. These errors can be larger than
the random sampling error. This often happens when the sample size is
large (so that o/4/n is small). Remember this unpleasant fact when
reading the results of an opinion poll or other sample survey. The
practical conduct of the survey influences the trustworthiness of its
results in ways that are not included in the announced margin of error.



Every inference procedure that we will meet has its own list of
warnings. Because many of the warnings are similar to those we have
mentioned, we will not print the full warning label each time. It is easy
to state (from the mathematics of probability) conditions under which a
method of inference is exactly correct. These conditions are never fully
met in practice.

For example, no population is exactly Normal. Deciding when a
statistical procedure should be used in practice often requires judgment
assisted by exploratory analysis of the data. Mathematical facts are,
therefore, only a part of statistics. The difference between statistics and
mathematics can be stated thusly: mathematical theorems are true;
statistical methods are often effective when used with skill.

Finally, you should understand what statistical confidence does not
say. Based on our SRS in Example 6.3, we are 95% confident that the
mean SATM score for the California students lies between 486 and
504. This says that this interval was calculated by a method that gives
correct results in 95% of all possible samples. It does rnof say that the
probability is 0.95 that the true mean falls between 486 and 504. No
randomness remains dfter we draw a particular sample and compute
the interval. The true mean either is or is not between 486 and 504. The
probability calculations of standard statistical inference describe how
often the method, not a particular sample, gives correct answers.



6.2 Tests of Significance
NULL HYPOTHESIS

The statement being tested in a test of significance is called the
null hypothesis. The test of significance is designed to assess the
strength of the evidence against the null hypothesis. Usually, the
null hypothesis is a statement of “no effect” or “no difference.”

We abbreviate “null hypothesis” as Hy. A null hypothesis is a
statement about the population parameters. For example, our null
hypothesis for Example 6.8 1s

Hy: there 1s no difference in the population means
or equivalently,
Hy: the difference in population means is zero

Note that the null hypothesis refers to the population means for all
undergraduates, including those for whom we do not have data.

alternative hypothesis

It is convenient also to give a name to the statement we hope or
suspect is true instead of Hy. This is called the alternative hypothesis
and is abbreviated as H, In Example 6.8, the alternative hypothesis
states that the means are different. We write this as

H,: the population means are not the same
or equivalently,

H,: the difference in population means is not zero

i
Hypotheses always refer to some populations or a model, not to a

part:'cu!ar outcome. For this reason, we muist state Hy and H, in terms
of population parameters.



Test statistics

We will learn the form of significance tests in a number of common
situations. Here are some principles that apply to most tests and that
help in understanding these tests:

* The test is based on a statistic that estimates the parameter that
appears in the hypotheses. Usually, this is the same estimate we
would use 1n a confidence interval for the parameter. When Hj 1s
true, we expect the estimate to take a value near the parameter
value specified by Hy. We call this specified value the
hypothesized value.

» Values of the estimate far from the hypothesized value give
evidence against Hy. The alternative hypothesis determines which
directions count against Hy.

* To assess how far the estimate is from the hypothesized value,
standardize the estimate. In many common situations the test
statistic has the form

estimate —hypothesizedvalue

" standarddeviationoftheestimate

Average scholarship amount of borrowers and

nonborrowers: The test statistic. In Example 6.8, the estimate
of the difference 1s $425. Using methods that we will discuss in detail
later, we can determine that the standard deviation of the estimate is
$353. For this problem the test statistic is

__ estimate —hypothesizedvalue

" standarddeviationoftheestimate

For our data,

z=180 =120
We have observed a sample estimate that is one and one-fifth standard
deviations away from the hypothesized value of the parameter.

P-VALUE

The probability, assuming Hj is true, that the test statistic would
take a value as extreme or more extreme than that actually
observed is called the P-value of the test. The smaller the P-value,
the stronger the evidence against Ay provided by the data.



EXAMPLE 6.12

Average scholarship amount of borrowers and
nonborrowers: The P-value. In Example 6.11, we found that the
test statistic for testing

Hy: the true mean difference is 0

versus
Hy: there is a difference in the population means
1s
z=180 =1.20

If Hy 1s true, then = is a single observation from the standard
Normal, M0, 1), distribution. Figure 6.9 illustrates this calculation. The

P-value is the probability of observing a value of Z at least as extreme
as the one that we observed, - = 1.20. From Table A, our table of
standard Normal probabilities, we find

P(Z>1.20)=1-0.8849=0.1151
The probability for being extreme in the negative direction is the same:
P(Z<-1.20)=0.1151
So the P-value is
P=2P(Z>1.20)=2(0.1151)=10.2302

FIGURE 6.9 The P-value, Example 6.12. The P-value is the
probability (when Hy is true) that T takes a value as extreme or more
extreme than the actual observed value, z = 1.20. Because the
alternative hypothesis is two-sided, we use both tails of the distribution.

This is the value that we reported on page 361. There is a 23%
chance of observing a difference as extreme as the $425 in our sample
if the true population difference is zero. This P-value tells us that our
outcome is not particularly extreme. In other words, the data do not
provide substantial evidence for us to doubt the validity of the null
hypothesis.



STATISTICAL SIGNIFICANCE

If the P-value is as small or smaller than a, we say that the data are
statistically significant at level a.

“Significant” in the statistical sense does not mean “important.” The original meaning of the
word is “signifying something.” In statistics, the term is used to indicate only that the evidence
against the null hypothesis has reached the standard set by a. For example, significance at level
0.01 is often expressed by the statement “The results were significant (P < 0.01).” Here, P
stands for the P-value. The P-value is more informative than a statement of significance because
we can then assess significance at any level we choose. For example, a result with P = 0.03 is
significant at the a = 0.05 level but is not significant at the a = 0.01 level. We discuss this in
more detail at the end of this section.

EXAMPLE 6.14

Parent income contribution by school type: The
conclusion. In Example 6.9, we found that the difference in the
average parent current income contribution between undergraduates
going to a private college versus public college was $1639. Because the

cost of tuition at a private college is typically higher than the cost at a
public college,'” we had a prior expectation that the parental current
income contribution would be higher for undergraduates going to a
private college. It is appropriate to use a one-sided alternative in this
situation. So, our hypotheses are

Hp: the true mean difference is 0
versus
H,: the difference between the average parent income contribution of

undergraduates at a private college and public college is positive

The standard deviation i1s $428 (again, we defer details regarding
this calculation), and the test statistic is

estimate —hypothesizedvalue

" standarddeviationoftheestimate
1639-0
K ]

z =
= 3.81

Because only positive differences in parental contributions count
against the null hypothesis, the one-sided alternative leads to the
calculation of the P-value using the upper tail of the Normal
distribution. In Table A, the largest = is 3.49. This means that for = =
3.81, P <0.0002. Using software, we can be more precise. The P-value
18

P = P(Z>3381)
= 0.0001



The calculation is illustrated in Figure 6.10. There is about a 1-in-
10,000 chance of observing a difference as large or larger than the
$1639 in our sample if the true population difference is zero. This
P-value tells us that our outcome is extremely rare. We conclude that
the null hypothesis must be false. Because the observed difference is
positive, here is one way to report the result: “The data clearly show
that the average parent income contribution for undergraduates at a
private college is larger than the average parent income contribution for
undergraduates at a public college (z = 3.81, 7 =10.0001).”

z=3.81

FIGURE 6.10 The P-value, Example 6.14. The P-value is the
probability (when Hp is true) that T takes a value as extreme or more
extreme than the actual observed value, z = 3.81. We look at only the
right tail because we are considering the one-sided (>) alternative.

A test of significance is a process for assessing the significance of the evidence provided by
data against a null hypothesis. The four steps common to all tests of significance are as follows:

1. State the null hypothesis Hy and the alternative hypothesis H,.
The test is designed to assess the strength of the evidence against
Hy; H, is the statement that we will accept if the evidence enables
us to reject Hy.

2. Calculate the value of the test statistic on which the test will be
based. This statistic usually measures how far the data are from
HO.

3. Find the P-value for the observed data. This is the probability,
calculated assuming that Hy is true, that the test statistic will
weigh against H; at least as strongly as it does for these data.

4. State a conclusion. One way to do this is to choose a significance
level a, how much evidence against Hp you regard as decisive. If
the P-value is less than or equal to @, you conclude that the
alternative hypothesis is true; if it is greater than a, you conclude
that the data do not provide sufficient evidence to reject the null
hypothesis. Your conclusion is a sentence or two that summarizes
what you have found by using a test of significance.



EXAMPLE 6.13

Average scholarship amount of borrowers and
nonborrowers: The conclusion. In Example 6.12, we found

that the P-value is
P=2P(Z>120)=2(0.1151)=0.2302

There is an 23% chance of observing a difference as extreme as the
$425 in our sample if the true population difference is zero. Because
this P-value is larger than the a = 0.05 significance level, we conclude
that our test result is not significant. We could report the result as “‘the
data fail to provide evidence that would cause us to conclude that there
is a difference in average scholarship amount between borrowers and
nonborrowers (z = 1.20, P =0.23).”

Tests for a population mean

Our discussion has focused on the reasoning of statistical tests, and we
have outlined the key ideas for one type of procedure. Our examples
focused on the comparison of two population means. Here i1s a
summary for a test about one population mean.

We want to test the hypothesis that a parameter has a specified
value. This is the null hypothesis. For a test of a population mean , the
null hypothesis is

H): the true population mean is equal to wy
which often is expressed as
Hy: 1t =g

where y 1s the hypothesized value of i that we would like to examine.

The test is based on data summarized as an estimate of the
parameter. For a population mean this is the sample mean Z. Our test
statistic measures the difference between the sample estimate and the
hypothesized parameter in terms of standard deviations of the test
statistic:

estimate —hypothesizedvalue

" standarddeviationoftheestimate




Suppose that we have calculated a test statistic = = 1.7. If the
alternative 1s one-sided on the high side, then the P-value is the
probability that a standard Normal random variable Z takes a value as
large or larger than the observed 1.7. That s,

P = P(Z>17)

= 1-P(Z<1.7)
= 1-0.9554
= 0.0446

Similar reasoning applies when the alternative hypothesis states that
the true u lies below the hypothesized i, (one-sided). When H, states
that x 1s simply unequal to 1y (two-sided), values of = away from zero in
either direction count against the null hypothesis. The P-value is the
probability that a standard Normal Z is at least as far from zero as the
observed z. Again, if the test statistic is = = 1.7, the two-sided P-value is
the probability that Z < —1.7 or Z > 1.7. Because the standard Normal
distribution is symmetric, we calculate this probability by finding P(Z >
1.7) and doubling it:

P(Z<-170tZ>17) = 2P(Z>17)
= 2(1-0.9554) =0.0892

We would make exactly the same calculation if we observed - =—1.7. It
is the absolute value |z| that matters, not whether = is positive or
negative. Here is a statement of the test in general terms.

z TEST FOR A POPULATION MEAN

To test the hypothesis Hy: i = jtp based on an SRS of size n from a
population with unknown mean y and known standard deviation o,
compute the test statistic

el

o/ \h

In terms of a standard Normal random variable Z, the P-value for a
test of Hj against

=

E e S D (=]

Hip<pm is PZs=s7z)

Hip#pg is 2P(Z = [z))

425

1zl

These P-values are exact if the population distribution is Normal
and are approximately correct for large » in other cases.



Energy intake from sugar-sweetened beverages.
Consumption of sugar-sweetened beverages (SSBs) has been positively
associated with weight gain and obesity and negatively associated with
the intake of important micronutrients. One study used data from the
National Health and Nutrition Examination Survey (NHANES) to
estimate SSB consumption among adolescents (aged 12 to 19 years).
More than 2400 individuals provided data for this study.” The mean
consumption was 298 calories per day.

You survey 100 students at your large university and find the
average consumption of SSBs per day to be 262 calories. Is there

evidence that the average calories per day from SSBs at your university
differs from this large U.S. survey average?

The null hypothesis is “no difference” from the published mean =
298. The alternative is two-sided because you did not have a particular
direction in mind before examining the data. So the hypotheses about
the unknown mean y of the students at your university are

Hy: =298
Hy: u#298

As usual in this chapter, we make the unrealistic assumption that the
population standard deviation is known. In this case, we’ll use the
standard deviation from the large national study, ¢ = 435 calories.

We compute the test statistic:

_ T 262-298
z o/ 435/4400
= —0.83

Figure 6.11 illustrates the P-value, which is the probability that a
standard Normal variable Z takes a value at least 0.83 away from zero.
From Table A, we find that this probability is

P=2P(Z>0.83)=2(1 —0.7967) = 0.4066

z=-0.83

FIGURE 6.11 Sketch of the P-value calculation for the two-sided
test, Example 6.15. The test statistic is z = -0.83.

That is, if the population mean were 298, more than 40% of the time an
SRS of size 100 from the students at your university would have a mean
consumption from SSBs at least as far from 298 as that of this sample.
The observed T = 262 is, therefore, not strong evidence that the student
population mean at your university differs from that of the large
population of adolescents.



Significance test of the mean SATM score. In a discussion
of SAT Mathematics (SATM) scores, someone comments: “Because
only a select minority of California high school students take the test,
the scores overestimate the ability of typical high school seniors. I think
that 1f all seniors took the test, the mean score would be no more than
485.” You do not agree with this claim and decide to use the SRS of
500 seniors from Example 6.3 (page 344) to assess the degree of
evidence against it. Those 500 seniors had a mean SATM score of T =
495. Is this strong enough evidence to conclude that this person’s claim
1s wrong?

Because the claim states that the mean 1s “no more than 485.” the
alternative hypothesis is one-sided. The hypotheses are

Ho: ;=485
Hy > 485

As we did in the discussion following Example 6.3, we assume that
6 =100. The = statistic is

g Tt 4548
o/vh — 100/4500
=2.24

Because H, is one-sided on the high side, large values of = count against
Hy. From Table A, we find that the P-value is

P=P(Z>224)=1-0.9875=10.0125

Figure 6.12 illustrates this P-value. A mean score as large as that
observed would occur roughly 12 times in 1000 samples if the
population mean were 485. This 1s convincing evidence that the mean
SATM score for all California high school seniors is higher than 485.
You can confidently tell this person that his or her claim is incorrect.

FIGURE 6.12 Sketch of the P-value calculation for the one-sided
test, Example 6.16. The test statistic is z = 2.24.



Water quality testing. The Deely Laboratory is a drinking-water
testing and analysis service. One of the common contaminants it tests
for 1s lead. Lead enters drinking water through corrosion of plumbing
materials, such as lead pipes, fixtures, and solder. The service knows
that their analysis procedure is unbiased but not perfectly precise, so the
laboratory analyzes each water sample three times and reports the mean
result. The repeated measurements follow a Normal distribution quite

closely. The standard deviation of this distribution is a property of the
analytic procedure and is known to be ¢ = 0.25 parts per billion (ppb).
The Deely Laboratory has been asked by a university to evaluate a
claim that the drinking water in the Student Union has a lead
concentration above the Environmental Protection Agency’s (EPA)
action level of 15 ppb. Because the true concentration of the sample is
the mean y of the population of repeated analyses, the hypotheses are

Hy: =15

Hypu#15
We use the two-sided alternative here because there is no prior evidence
to substantiate a one-sided alternative. The lab chooses the 1% level of

significance, & = 0.01.
Three analyses of one specimen give concentrations

15.84 15.33 15.58

The sample mean of these readings is
T = LDBIABIAN _ g5 58

The test statistic is

_ oz _ 15581500 _
T ONE T T 0BNE 4.02

Because the alternative is two-sided, the P-value is
P=2P(Z>4.02)

We cannot find this probability in Table A. The largest value of - in
that table is 3.49. All that we can say from Table A is that P is less than

2P(Z = 3.49) = 2(1 — 0.9998) = 0.0004. Software or a calculator could
be used to give an accurate value of the P-value. However, because the
P-value is clearly less than the lab’s standard of 1%, we reject Hp.
Because 7 1s larger than 15.00, we can conclude that the true
concentration level of lead in this one specimen is higher than the
EPA’s action level.




99% confidence interval for the mean concentration.
The 99% confidence interval for # in Example 6.17 1s

Tz + z*\—;ﬁ = 15.58 + 2.576 (0.25/\/5)

= 15.58+0.37
= (15.21,15.95)

The hypothesized value go = 15.00 in Example 6.17 falls outside the
confidence interval we computed in Example 6.18. In other words, it is
in the region we are 99% confident that g is siof in. Thus, we can reject

Hy: p=15.00
at the 1% significance level. On the other hand, we cannot reject
Hy: p=15.30
at the 1% level in favor of the two-sided alternative H, u # 15.30,

because 15.30 lies inside the 99% confidence interval for y. Figure 6.13
illustrates both cases.

Cannot
Reject reject
Hy: =15 Hy: p=15.30

I 1 1
148 150 152 154 156 158 16.0 162

FIGURE 6.13 The link between two-sided significance tests and
confidence intervals. For the study described in Examples 6.17 and
6.18, values of u falling outside a 99% confidence interval can be

rejected at the 1% significance level; values falling inside the interval
cannot be rejected. This holds for any significance level dand 1 — a
confidence interval.

The calculation in Example 6.17 for a 1% significance test is very
similar to the calculation for a 99% confidence interval. In fact, a two-
sided test at significance level a can be carried out directly from a
confidence interval with confidence level C =1 — a.

TWO-SIDED SIGNIFICANCE TESTS AND
CONFIDENCE INTERVALS

A level a two-sided significance test rejects a hypothesis Hy: 1t = o
exactly when the value yo falls outside a level 1 — a confidence
interval for g.



The P-value versus a statement of
significance

The observed result in Example 6.17 was = = 4.02. The conclusion that
this result is significant at the 1% level does not tell the whole story.
The observed = is far beyond the = corresponding to 1%, and the
evidence against Hy 1s far stronger than 1% significance suggests. The
actual P-value

2P(Z=>4.02)=0.000058

gives a better sense of how strong the evidence is. The P-value is the
smallest level a at which the data are significant. Knowing the P-value
allows us to assess significance at any level.

EXAMPLE 6.19

Test of the mean SATM score: Significance. In Example
6.16, we tested the hypotheses

Hy: j1 =485
Hy: 1> 485

concerning the mean SAT Mathematics score g of California high
school seniors. The test had the P-value P = 0.0125. This result is

significant at the a = 0.05 level because 0.0125 < 0.05. It 1s not
significant at the a = 0.01 level, because the P-value is larger than 0.01.
See Figure 6.14.

o< P:notsignificant P o2 P: significant

I I I
0 0.01 0.02 0.03 0.04 0.05

FIGURE 6.14 Link between the P-value and the significance level a.
An outcome with P-value P is significant at all levels a at or above P
and is not significant at smaller levels a.



Average scholarship amount of borrowers and
nonborrowers: Assessing significance. In Example 6.11
(page 365), we found the test statistic = = 1.20 for testing the null
hypothesis that there was no difference in the mean scholarship amount
between borrowers and nonborrowers. The alternative was two-sided.
Under the null hypothesis, = has a standard Normal distribution, and
from the last row in Table D, we can see that there is a 95% chance that
= 18 between +1.96. Therefore, we reject Hy in favor of H, whenever - is
outside this range. Because our calculated value is 1.20, we are within
the range and we do not reject the null hypothesis at the 5% level of
significance.

=*10.674 0.841 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.091 3.291

50% 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9%

Confidence level C

6.3 Use and Abuse of Tests

Information provided by the P-value. Suppose that the test
statistic for a two-sided significance test for a population mean is = =
1.95. From Table A we can calculate the P-value. It is

P=2[1-P(Z<1.95)]=2(1 - 0.9744) = 0.0512

We have failed to meet the standard of evidence for a = 0.05.
However, with the information provided by the P-value, we can see that
the result just barely missed the standard. If the effect in question is
interesting and potentially important, we might want to design another
study with a larger sample to investigate it further.

6.4 Power and Inference as a Decision

The power of a TBBMC significance test. Can a six-month exercise program
increase the total body bone mineral content (TBBMC) of young women? A team of
researchers is planning a study to examine this question. Based on the results of a
previous study, they are willing to assume that ¢ = 2 for the percent change in TBBMC
over the six-month period. They also believe that a change in TBBMC of 1% is
important, so they would like to have a reasonable chance of detecting a change this
large or larger. Is 25 subjects a large enough sample for this project?

We will answer this question by calculating the power of the significance test that
will be used to evaluate the data to be collected. The calculation consists of three steps:

1. State Hp, Hy (the particular alternative we want to detect), and the significance
level a.
2. Find the values of T that will lead us to reject Hy.

3. Calculate the probability of observing these values of # when the alternative is
true.



Step 1. The null hypothesis is that the exercise program has no effect on TBBMC. In
other words, the mean percent change is zero. The alternative is that exercise is
beneficial; that is, the mean change is positive. Formally, we have

Hyu=0
Hypu=0
The alternative of interest is ¢ = 1% increase in TBBMC. A 5% test of significance will

be used.

Step 2. The z test rejects Hy at the a = 0.05 level whenever

2=

Ty _ -0 > 1.645
af;?nc 2,’;ﬁ5 -

Be sure you understand why we use 1.645. Rewrite this in terms of T:
Z > 1.645 fﬁ

Z > 0.658

Because the significance level is & = 0.05, this event has probability 0.05 of
occurring when the population mean m is 0.

Step 3. The power to detect the alternative gz = 1% is the probability that Hy will be
rejected when in fact p = 1%. We calculate this probability by standardizing T, using the
value g = 1, the population standard deviation ¢ = 2, and the sample size 7 = 25. The
power is

P(T > 0658when p=1)

Fail to
reject Hy

Distribution
of ¥whenu =0

T-p S 0681
P(W = "2/4%%

= P(Z > -03855=0 80

» Reject H

I
I
I
I
I
I
I

1
-2 -1 0 0.658 1 2 3
Increase

Fail to +——m——|

reject Hy -

Reject Hy

Distribution
of ¥ whenu=1 —

Power = 0.80

Ll
-2 -1 0 0.658 1 2 3
Increase

FIGURE 6.16 The sampling distributions of Z when g = 0 and when y = 1, Example
6.29. The power is the probability that the test rejects Hy when the alternative is true.



Power of the lead concentration test. Example 6.17 (page 375) presented a
test of

Hy: p=15.00
Hy: p#15.00

at the 1% level of significance. What is the power of this test against the specific
alternative y = 15.50?
The test rejects Hp when |z| = 2.576. The test statistic is

_ x—1aW

z= BNE
Some arithmetic shows that the test rejects when either of the following is true:
z=2.576 (inother words, T = 15.37)
z<—2.576 (in other words, T < 14.63)

These are disjoint events, so the power is the sum of their probabilities, computed
assuming that the alternative = 15.50 is true. We find that

= _ T-p 15.37-15 .50
PF > 1531 = P(«fvﬁ > Y )

= P(Z>-090)=0 8159

= < _ z-p < ke
Pz <14.63) P(dv& S =i )

P(Z <-603)=0

Figure 6.17 illustrates this calculation. A power of about 0.82, we are quite confident
that the test will reject Hy when this alternative is true.

Reject Hy Fail to reject Hy

Power = (0.8159

I I
14.5 15.0 15.5 16.0

FIGURE 6.17 The power, Example 6.30. Unlike Figure 6.16, only the sampling
distribution under the alternative is shown.



Outer diameter of a skateboard bearing. The mean outer diameter of a
skateboard bearing is supposed to be 22.000 millimeters (mm). The outer diameters vary
Normally with standard deviation o = 0.010 mm. When a lot of the bearings arrives, the
skateboard manufacturer takes an SRS of five bearings from the lot and measures their
outer diameters. The manufacturer rejects the bearings if the sample mean diameter is
significantly different from 22 mm at the 5% significance level.

This is a test of the hypotheses

Hy:p=22
Hyp#22

To carry out the test, the manufacturer computes the z statistic:
7= x—24
URY:
and rejects Hy if
z=—=196 or z=1.96

A Type I error is to reject Hy when in fact g = 22.

What about Type II errors? Because there are many values of y in H, we will
concentrate on one value. The producer and the manufacturer agree that a lot of bearings
with mean 0.015 mm away from the desired mean 22.000 should be rejected. So a
particular Type II error is to accept Hy when in fact = 22.015.

Figure 6.21 shows how the two probabilities of error are obtained from the two
sampling distributions of Z, for 4 =22 and for ¢ = 22.015. When g = 22, Hp is true and
to reject Hy is a Type I error. When g = 22.015, accepting Ay is a Type II error. We will
now calculate these error probabilities.

Reject Hy ccept Hy eject Hy

A

I I
Critical w=22  Critical pu=22015
valueof ¥  (Hp) value of ¥ (H,)

FIGURE 6.21 The two error probabilities, Example 6.33. The probability of a Type |
error (yellow area) is the probability of rejecting Hy: 4 = 22 when, in fact, y=22. The
probability of a Type Il error (blue area) is the probability of accepting Hp when, in fact,
M =22.015.

The probability of a Type I error is the probability of rejecting Hy when it is really

true. In Example 6.33, this is the probability that |z| = 1.96 when g = 22. But this 1s
exactly the significance level of the test. The critical value 1.96 was chosen to make this

probability 0.05, so we do not have to compute it again. The definition of “‘significant at
level 0.05” is that sample outcomes this extreme will occur with probability 0.05 when

Hy is true.



