5.1 Toward Statistical Inference

PARAMETERS AND STATISTICS

A parameter is a number that describes the population. A
parameter is a fixed number, but in practice, we do not know its
value.

A statistic is a number that describes a sample. The value of a
statistic 1s known when we have taken a sample, but it can change

from sample to sample. We often use a statistic to estimate an
unknown parameter.

Understanding the college student market. Since 1987,
Student Monitor has published an annual market research study that
provides clients with information about the college student market. The
firm uses a random sample of 1200 students located throughout the
United States." One phase of the research focuses on computing and
technology. The firm reports that undergraduates spend an average of
19.0 hours per week on the Internet and that 88% own a cell phone.

sample proportion

The sample mean ¥ = 19.0 hours is a statistic. The corresponding
parameter is the average (call it x) of all undergraduates enrolled in
four-year colleges and universities. Similarly, the proportion of the
sample who own a cell phone

p =Ty =0.88 =88%
population proportion

1s a statistic. The corresponding parameter is the proportion (call it p)
of all undergraduates at four-year colleges and universities who own a
cell phone. We don’t know the values of the parameters 4 and p, so we
use the statistics ¥ and P, respectively, to estimate them.



» Shape: The histograms look Normal. Figure 5.3 is a Normal
quantile plot of the values of P for our samples of size 100. It
confirms that the distribution in Figure 5.1 is close to Normal.
The 1000 values for samples of size 1200 1n Figure 5.2 are even
closer to Normal. The Normal curves drawn through the
histograms describe the overall shape quite well.

* Center: In both cases, the values of the sample proportion P vary

from sample to sample, but the values are centered at 0.9. Recall

that p = 0.9 is the true population parameter. Some samples have
a P less than 0.9 and some greater, but there is no tendency to be
always low or always high. That is, P has no bias as an estimator
of p. This is true for both large and small samples. (Want the
details? The mean of the 1000 values of P is 0.8985 for samples
of size 100 and 0.8994 for samples of size 1200. The median
value of is exactly 0.9 for samples of both sizes.)

Spread: The values of P from samples of size 1200 are much less
spread out than the values from samples of size 100. In fact, the
standard deviations are 0.0304 for Figure 5.1 and 0.0083 for

Figure 5.2.
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FIGURE 5.1 The results of many SRSs have a regular pattern,
Example 5.3. Here we draw 1000 SRSs of size 100 from the same
population. The population parameter is p = 0.9. The histogram shows
the distribution of 1000 sample proportions.
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FIGURE 5.2 The distribution of the sample proportion for 1000 SRSs
of size 1200 drawn from the same population as in Figure 5.1. The two
histograms have the same scale. The statistic from the larger sample is
less variable.
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FIGURE 5.3 Normal quantile plot of the sample proportions in Figure
5.1. The distribution is close to Normal except for some clustering due
to the fact that the sample proportions from a sample of size 100 can
take only values that are a multiple of 0.01.

BIAS AND VARIABILITY

Bias concerns the center of the sampling distribution. A statistic
used to estimate a parameter is an unbiased estimator if the mean
of its sampling distribution is equal to the true value of the
parameter being estimated.

The wvariability of a statistic is described by the spread of its
sampling distribution. This spread is determined by the sampling
design and the sample size ». Statistics from larger probability
samples have smaller spreads.

The margin of error is a numerical measure of the spread of a
sampling distribution. It can be used to set bounds on the size of
the likely error in using the statistic as an estimator of a population
parameter.

To reduce bias, use random sampling. When we start with a list of
the entire population, simple random sampling produces unbiased
estimates—the values of a statistic computed from an SRS neither
consistently overestimate nor consistently underestimate the value
of the population parameter.

To reduce the variability of a statistic from an SRS, use a larger
sample. You can make the variability as small as you want by
taking a large enough sample.



LARGE POPULATIONS DO NOT REQUIRE
LARGE SAMPLES

The variability of a statistic from a random sample depends little
on the size of the population, as long as the population is at least 20
times larger than the sample.

5.2 The Sampling Distribution of a Sample Mean

FACTS ABOUT SAMPLE MEANS

1. Sample means are less variable than individual observations.

2. Sample means are more Normal than individual
observations.

If the population has mean x, then ux is the mean of the distribution of each
observation Xi. To get the mean of x, we use the rules for means of random variables.

rules for variances, p. 258

That is, the mean of ¥ is the same as the mean of the population. The
sample mean ¥ is, therefore, an unbiased estimator of the unknown

population mean x.
The observations are independent, so the addition rule for variances

also applies:
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With # in the denominator, the variability of ¥ about its mean decreases
as the sample size grows. Thus, a sample mean from a large sample will
usually be very close to the true population mean x. Here is a summary
of these facts.

MEAN AND STANDARD DEVIATION OF A
SAMPLE MEAN

Let ¥ be the mean of an SRS of size n from a population having
mean y and standard deviation ¢. The mean and standard deviation
of X are
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EXAMPLE 5.6

Standard deviations for sample means of visit lengths.
The standard deviation of the population of visit lengths in Figure 5.6
(a) is 0 = 41.84 minutes. The length of a single visit will often be far
from the population mean. If we choose an SRS of 15 visits, the
standard deviation of their mean length is

o7 = %4 = 10.80minutes
Averaging over more visits reduces the variability and makes it
more likely that ¥ is close to g. Our sample size of 60 visits is 4 times

15, so the standard deviation will be half as large:

oz = %%4 = 5.40minutes

SAMPLING DISTRIBUTION OF A SAMPLE
MEAN

If a population has the N(u. o) distribution, then the sample mean

of n independent observations has the N, 6/4/n) distribution.

CENTRAL LIMIT THEOREM

Draw an SRS of size » from any population with mean x and finite
standard deviation ¢. When » is large, the sampling distribution of

the sample mean ¥ 1s approximately Normal:

T is approximately N (ps, \—‘;";)

EXAMPLE 5.8

How can we reduce the standard deviation? In the setting
of Example 5.7, if we want to reduce the standard deviation of ¥ by a

factor of 2, we must take a sample four times as large, n = 4 x 60, or

240. Then

o7 = 4—‘&1‘% = 2.70minutes

For samples of size 240, about 95% of the sample means will be within

twice 2.70, or 5.40 minutes, of the population mean .



EXAMPLE 5.11

Time between snaps. Snapchat has more than 100 million daily
users sending well over 400 million snaps a day.® Suppose that the time
X between snaps received 1s governed by the exponential distribution
with mean g = 15 minutes and standard deviation ¢ = 15 minutes. You
record the next 50 times between snaps. What is the probability that
their average exceeds 13 minutes?

The central limit theorem says that the sample mean time Z (in
minutes) between snaps has approximately the Normal distribution with
mean equal to the population mean g = 15 minutes and standard
deviation

= = 715% = 2.12minutes
The sampling distribution of Z is, therefore, approximately N(15,2.12).
Figure 5.10 shows this Normal curve (solid) and also the actual density
curve of T (dashed).

The probability we want is P (Z > 13.0). This is the area to the
right of 13 under the solid Normal curve in Figure 5.10. A Normal
distribution calculation gives

P(z >13.0) = P(ijﬁf > 1?;9];,15)
= P(Z> —0.94) = 0.8264

Getting to and from campus. You live off campus and take the
shuttle, provided by your apartment complex, to and from campus.
Your time on the shuttle in minutes varies from day to day. The time
going to campus X has the M(20,4) distribution, and the time returning
from campus Y varies according to the N(18, 8) distribution. If they
vary independently, what is the probability that you will be on the
shuttle for less time going to campus?

The difference in times X — ¥ is Normally distributed, with mean
and variance

}.LX_YZ;LX—;.LY:20—18=2
ok y=0%+ol =4 +8 =80

Because /80 = 8.94, X — Y has the N(2, 8.94) distribution. Figure
5.12 illustrates the probability computation:

P(X<Y) = P(X—Y<0)
_ (X-Y)-2 0-2
- P( 591 < 8_94)
= P(Z < —0.22) =0.4129

Although, on average, it takes longer to go to campus than return, the
trip to campus will take less time on roughly two of every five days.



5.3 Sampling Distributions for Counts and
Proportions

THE BINOMIAL SETTING

1. There is a fixed number of observations ».

2. The n observations are all independent.

3. Each observation falls into one of just two categories, which
for convenience we call “success” and “failure.”

4. The probability of a success, call it p, is the same for each
observation.

BINOMIAL DISTRIBUTIONS

The distribution of the count X of successes in the binomial setting
is called the binomial distribution with parameters » and p. The
parameter » is the number of observations, and p is the probability
of a success on any one observation. The possible values of X are
the whole numbers from 0 to #. As an abbreviation, we say that the
distribution of X'is B(n, p).

SAMPLING DISTRIBUTION OF A COUNT

A population contains proportion p of successes. If the population
is much larger than the sample, the count X of successes in an SRS
of size n has approximately the binomial distribution B(n, p).

The accuracy of this approximation improves as the size of the
population increases relative to the size of the sample. As a rule of
thumb, we will use the binomial sampling distribution for counts
when the population is at least 20 times as large as the sample.

addition rules for means and variances, pp. 254, 258

px = ps1 + ps2 + + 00+ Hsn
= nps = np

Similarly, the variance is » times the variance of a single S, so that
0'3( = np(1l — p). The standard deviation ox is the square root of the

variance. Here is the result.



BINOMIAL MEAN AND STANDARD DEVIATION

If a count X has the binomial distribution B(#, p), then
Hx =np
ox = +/np(1—p)

EXAMPLE 5.23

The Helsinki Heart Study. The Helsinki Heart Study asked
whether the anticholesterol drug gemfibrozil reduces heart attacks. In
planning such an experiment, the researchers must be confident that the
sample sizes are large enough to enable them to observe enough heart
attacks. The Helsinki study planned to give gemfibrozil to about 2000
men aged 40 to 55 and a placebo to another 2000. The probability of a
heart attack during the five-year period of the study for men this age is
about 0.04. What are the mean and standard deviation of the number of
heart attacks that will be observed in one group if the treatment does not
change this probability?

There are 2000 independent observations, each having probability p
= 0.04 of a heart attack. The count X of heart attacks has the B(2000,
0.04) distribution, so that

px = np = (2000) (0.04) = 80

ox = v/np (1 —p) = 1/(2000) (0.04) (0.96) = 8.76

The expected number of heart attacks is large enough to permit
conclusions about the effectiveness of the drug. In fact, there were 84
heart attacks among the 2035 men actually assigned to the placebo,
quite close to the mean. The gemfibrozil group of 2046 men suffered
only 56 heart attacks. This is evidence that the drug reduces the chance
of a heart attack. In a later chapter, we will learn how to determine if
this 1s strong enough evidence to conclude the drug is effective.



Sample proportions

What proportion of a company’s sales records have an incorrect sales
tax classification? What percent of adults favor stronger laws restricting
firearms? In statistical sampling, we often want to estimate the
proportion p of “successes” in a population. Our estimator is the sample
proportion of successes:

LOOK BACK
population proportion, p. 283

count of successes in sample

p =

size of sample
X
n

MEAN AND STANDARD DEVIATION OF A
SAMPLE PROPORTION

Let p be the sample proportion of successes in an SRS of size n
drawn from a large population having population proportion p of
successes. The mean and standard deviation of p are

Hy =p
N p(1-p)
O-P = n

The formula for o is exactly correct in the binomial setting. It is
approximately correct for an SRS from a large population. We will
use it when the population is at least 20 times as large as the
sample



NORMAL APPROXIMATION FOR COUNTS
AND PROPORTIONS

Draw an SRS of size »n from a large population having population
proportion p of successes. Let X be the count of successes in the
sample and p = X/n be the sample proportion of successes. When »

is large, the sampling distributions of these statistics are
approximately Normal:

Xisapproximately N (np, np (1 — p))

pisapproximately N (p, A/ @)

As a rule of thumb, we will use this approximation for values of »
and p that satisfy np > 10 and n(1-p) = 10.

Compare the Normal approximation with the exact

calculation. Let’s compare the Normal approximation for the
calculation of Example 5.24 with the exact calculation from software.
We want to calculate P(p > 0.58) when the sample size is #» = 2500 and
the population proportion is p = 0.6. Example 5.25 shows that

oy = /22 — 0.0098

Act as if p were Normal with mean 0.6 and standard deviation
0.0098. The approximate probability, as illustrated in Figure 5.18, is

A 0.6
P(5>058) = P(5opm> o)
= P(Z > -2.04) = 0.9793

Probability = 0.9793

p= 058
z=-2.04



EXAMPLE 5.27

Using the Normal approximation. The audit described in
Example 5.19 examined an SRS of 150 sales records for compliance
with sales tax laws. In fact, 8% of all the company’s sales records have
an incorrect sales tax classification. The count X of bad records in the
sample has approximately the B(150, 0.08) distribution.

According to the Normal approximation to the binomial
distributions, the count X is approximately Normal with mean and
standard deviation

ux =mnp = (150) (0.08) =12
ox = v/np (1 —p) = 1/(150) (0.08) (0.92) = 3.3226

The Normal approximation for the probability of no more than 10
misclassified records is the area to the left of X = 10 under the Normal
curve. Using Table A,

P(X<10) = P(%ghf < 1%
= P(Z < —0.60) = 0.2743

BINOMIAL COEFFICIENT

The number of ways of arranging k& successes among 7
observations is given by the binomial coefficient

n _ n!
k = kl(n—Fk)

fork=0,1,2,...,n

factorial

The formula for binomial coefficients uses the factorial notation.
The factorial »! for any positive whole number # is

ml=nxm—-1)xn—-2)=x - -x3x2x1

Also, 0! = 1. Notice that the larger of the two factorials in the
denominator of a binomial coefficient will cancel much of the 7! in the
numerator. For example, the binomial coefficient we need for Example

5.281s
5 — 5
o] T

(5)(4)(3)(2)(1)
(2)(1)=(3)(2)(1)
(5)(4) _ 20 =10

@0 2

This agrees with our previous calculation.




n
The notation (k) is not related to the fraction 3. A helpful way

to remember its meaning is to read it as “binomial coefficient 7 choose
k. Binomial coefficients have many uses in mathematics, but we are
interested in them only as an aid to finding binomial probabilities. The

binomial coefficient (k) counts the number of ways in which &

successes can be distributed among 7 observations. The binomial
probability P(X = k) is this count multiplied by the probability of any
specific arrangement of the & successes. Here is the formula we seek.

BINOMIAL PROBABILITY

If X has the binomial distribution B(#n, p) with n observations and
probability p of success on each observation, the possible values of
Xare 0, 1, 2, ..., n If k 1s any one of these values, the binomial
probability is

P(X=Fk)= (:) P(1-p) "

EXAMPLE 5.29

Using the binomial probability formula. The number X of
misclassified sales records in the auditor’s sample in Example 5.21
(page 316) has the B(15,0.08) distribution. The probability of finding no
more than one misclassified record is

P(X<1) = P(X=0)+P(X=1)

- (1;) (0.08)°(0.92)* + (115) (0.08)*(0.92)*

= 4L (1) (0.2863) + = (0.08) (0.3112)
= (1) (1) (0.2863) + (15) (0.08) (0.3112)
= 0.2863 + 0.3734 = 0.6597

The calculation used the facts that 0! 5 1 and that ¢° = 1 for any
number a # 0. The result agrees with that obtained from Table C in
Example 5.21.



+ A count X of successes has a Poisson distribution in the Poisson
setting: the number of successes that occur in two
nonoverlapping units of measure are independent; the probability
that a success will occur in a unit of measure is the same for all
units of equal size and is proportional to the size of the unit; the
probability that more than one event occurs in a unit of measure
1s negligible for very small-sized units. In other words, the events
occur one at a time.

+ If X has the Poisson distribution with mean u, then the standard
deviation of X'is , /i1, and the possible values of X are the whole

numbers 0, 1, 2, 3, and so on.
* The Poisson probability that X takes any of these values is

P(X=k) = S k=0,1,2,3,..

k!

Sums of independent Poisson random variables also have the
Poisson distribution. For example, in a Poisson model with mean
1t per unit of measure, the count of successes in @ units is a
Poisson random variable with mean au.



