
ASSOCIATION BETWEEN VARIABLES 

Two variables measured on the same cases are associated if knowing the values of one 

of the variables tells you something about the values of the other variable. 

 

 

RESPONSE VARIABLE, EXPLANATORY VARIABLE 

A response variable measures an outcome of a study. An explanatory variable explains 

or causes changes in the response variable. 

 

KEY CHARACTERISTICS OF DATA FOR RELATIONSHIPS 

A description of the key characteristics of a data set that will be used to explore a 

relationship between two variables should include 

 

Cases. Identify the cases and how many there are in the data set. 

Categorical or quantitative. Classify each variable as categorical or quantitative. 

Values. Identify the possible values for each variable. 

Explanatory or response. If appropriate, classify each variable as explanatory or 

response. 

Label. Identify what is used as a label variable if one is present. 

 

 

independent variable / dependent variable 

 

Some of the statistical techniques in this chapter require us to distinguish explanatory 

from response variables; others make no use of this distinction. You will often see 

explanatory variables called independent variables variable and response variables 

called dependent variables. These terms express mathematical ideas; they are not 

statistical terms. The concept that underlies this language is that the response depends 

on explanatory variables. Because the words “independent” and “dependent” have 

other meanings in statistics that are unrelated to the explanatory-response distinction, 

we prefer to avoid those words. 

Most statistical studies examine data on more than one variable. Fortunately, statistical 

analysis of several-variable data builds on the tools used for examining individual 

variables. The principles that guide our work also remain the same: 

 

Start with a graphical display of the data. 

Look for overall patterns and deviations from those patterns. 

Based on what you see, use numerical summaries to describe specific aspects of the 

data. 

 

 

SCATTERPLOT 

A scatterplot shows the relationship between two quantitative variables measured on 

the same cases. The values of one variable appear on the horizontal axis, and the values 



of the other variable appear on the vertical axis. Each case in the data appears as the 

point in the plot determined by the values of both variables for that case. 

 

 

 

 

EXAMINING A SCATTERPLOT 

In any graph of data, look for the overall pattern and for striking deviations from that 

pattern. You can describe the overall pattern of a scatterplot by the form, direction, and 

strength of the relationship. 

 

Linear relationship 

The relationship is difficult to see. Looking at it carefully suggests that its form is 

approximately linear. In other words, it may be appropriate to summarize the 

relationship with a straight line.  

 

DIRECTION: POSITIVE ASSOCIATION, NEGATIVE ASSOCIATION 

Two variables are positively associated when above-average values of one tend to 

accompany above-average values of the other and below-average values also tend to 

occur together. Two variables are negatively associated when above-average values of 

one tend to accompany below-average values of the other, and vice versa. 

 

The strength of a relationship in a scatterplot is determined by how closely the points 

follow a clear form. 

 

For some of these, we can apply a transformation to the data that will make the 

relationship approximately linear. To do this, we replace the original values with the 

transformed values and then use the transformed values for our analysis. Transforming 

data is common in statistical practice. There are systematic principles that describe how 

transformations behave and guide the search for transformations that will, for example, 

make a distribution more Normal or a curved relationship more linear.  

 

The most important transformation that we will use is the log transformation. This 

transformation can be used for variables that have positive values only. Occasionally, 

we use it when there are zeros, but in this case we first replace the zero values by some 

small value, often one-half of the smallest positive value in the data set.  

 

CATEGORICAL VARIABLES IN SCATTERPLOTS 

To add a categorical variable to a scatterplot, use a different plot color or symbol for 

each category. 

 

Scatterplot smoothers can help you to learn about relationships between two 

quantitative variables. They can confirm that there is a linear relationship, or they can 

suggest other features that are not evident in a casual look at the scatterplot. Here is an 



example of the latter scenario. 

 

SECTION 2.2 SUMMARY 

• A scatterplot displays the relationship between two quantitative variables. Mark 

values of one variable on the horizontal axis (x axis) and values of the other 

variable on the vertical axis (y axis). Plot each individual’s data as a point on 

the graph. 

• Always plot the explanatory variable, if there is one, on the x axis of a scatterplot. 

Plot the response variable on the y axis. 

• In examining a scatterplot, look for an overall pattern showing the form, 

direction, and strength of the relationship, and then for outliers or other 

deviations from this pattern. 

• Form: Linear relationships, where the points show a straight-line pattern, are an 

important form of relationship between two variables. Curved relationships are 

other forms to watch for. 

• Direction: If the relationship has a clear direction, we speak of either positive 

association (high values of the two variables tend to occur together) or negative 

association (high values of one variable tend to occur with low values of the 

other variable). 

• Strength: The strength of a relationship is determined by how close the points 

in the scatterplot lie to a simple form such as a line. Plot points with different 

colors or symbols to see the effect of a categorical variable in a scatterplot. 

• To display the relationship between a categorical explanatory variable and a 

quantitative response variable, make a graph that compares the distributions of 

the response for each category of the explanatory variable. 

• A log transformation of one or both variables in a scatterplot can help us to 

understand the relationship between two quantitative variables. 

• A scatterplot smoother is a tool to examine the relationship between two 

quantitative variables by fitting a smooth curve to the data. The amount of 

smoothing can be varied using a smoothing parameter. 

 

A scatterplot displays the form, direction, and strength of the relationship between 

two quantitative variables. Linear (straight-line) relations are particularly important 

because a straight line is a simple pattern that is quite common. We say a linear 

relationship is strong if the points lie close to a straight line and weak if they are 

widely scattered about a line. Our eyes can be fooled by changing the plotting scales 

or the amount of white space around the cloud of points in a scatterplot. We need 

to follow our strategy for data analysis by using a numerical measure to supplement 

the graph. Correlation is the measure we use. 

 



 
 

Properties of correlation 

The formula for correlation helps us see that r is positive when there is a positive 

association between the variables. Height and weight, for example, have a positive 

association. People who are above average in height tend to also be above average 

in weight. Both the standardized height and the standardized weight for such a 

person are positive. People who are below average in height tend also to have 

below-average weight. Then both standardized height and standardized weight are 

negative. In both cases, the products in the formula for r are mostly positive, so r is 

positive. In the same way, we can see that r is negative when the association 

between x and y is negative. More detailed study of the formula gives more detailed 

properties of r. 

Here is what you need to know to interpret correlation: 

 

• Correlation makes no use of the distinction between explanatory and response 

variables. It makes no difference which variable you call x and which you call 

y in calculating the correlation. 

• Correlation requires that both variables be quantitative. For example, we cannot 

calculate a correlation between the incomes of a group of people and what city 

they live in because city is a categorical variable. 

• Because r uses the standardized values of the observations, r does not change 

when we change the units of measurement (a linear transformation) of x, y, or 

both. Measuring height in inches rather than centimeters and weight in pounds 

rather than kilograms does not change the correlation between height and weight. 

The correlation r itself has no unit of measurement; it is just a number. 

• Positive r indicates positive association between the variables, and negative r 

indicates negative association. 

• The correlation r is always a number between −1 and 1. Values of r near 0 

indicate a very weak linear relationship. The strength of the relationship 

increases as r moves away from 0 toward either −1 or 1. Values of r close to −1 

or 1 indicate that the points lie close to a straight line. The extreme values r = 

−1 and r = 1 occur only when the points in a scatterplot lie exactly along a 

straight line. 

• Correlation measures the strength of only the linear relationship between two 



variables. Correlation does not describe curved relationships between variables, 

no matter how strong they are. 

• Like the mean and standard deviation, the correlation is not resistant: r is 

strongly affected by a few outlying observations. Use r with caution when 

outliers appear in the scatterplot. 

 

The scatterplots illustrate how values of r closer to 1 or −1 correspond to stronger 

linear relationships. To make the essential meaning of r clear, the standard 

deviations of both variables in these plots are equal, and the horizontal and vertical 

scales are the same. In general, it is not so easy to guess the value of r from the 

appearance of a scatterplot. Remember that changing the plotting scales in a 

scatterplot may mislead our eyes, but it does not change the standardized values of 

the variables and, therefore, cannot change the correlation.  

 

Finally, remember that correlation is not a complete description of two-variable data, 

even when the relationship between the variables is linear. You should give the 

means and standard deviations of both x and y along with the correlation. (Because 

the formula for correlation uses the means and standard deviations, these measures 

are the proper choices to accompany a correlation.) Conclusions based on 

correlations alone may require rethinking in the light of a more complete description 

of the data. 

 

SECTION 2.3 SUMMARY 

• The correlation r measures the direction and strength of the linear (straight line) 

association between two quantitative variables x and y. Although you can 

calculate a correlation for any scatterplot, r measures only linear relationships. 

• Correlation indicates the direction of a linear relationship by its sign: r > 0 for a 

positive association and r < 0 for a negative association. 

• Correlation always satisfies −1 ≤ r ≤ 1 and indicates the strength of a 

relationship by how close it is to −1 or 1. Perfect correlation, r = ±1, occurs only 

when the points lie exactly on a straight line. 

• Correlation ignores the distinction between explanatory and response variables. 

The value of r is not affected by changes in the unit of measurement of either 

variable. Correlation is not resistant, so outliers can greatly change the value of 

r. 

 

 

 

 

 

 

 

2.4 Least-Squares Regression 



Correlation measures the direction and strength of the linear (straight-line) relationship 

between two quantitative variables. If a scatterplot shows a linear relationship, we 

would like to summarize this overall pattern by drawing a line on the scatterplot. A 

regression line summarizes the relationship between two variables, but only in a 

specific setting: when one of the variables helps explain or predict the other. That is, 

regression describes a relationship between an explanatory variable and a response 

variable. 

 

REGRESSION LINE 

A regression line is a straight line that describes how a response variable y changes as 

an explanatory variable x changes. We often use a regression line to predict the value 

of y for a given value of x. Regression, unlike correlation, requires that we have an 

explanatory variable and a response variable. 

 

Fitting a line to data 

When a scatterplot displays a linear pattern, we can describe the overall pattern by 

drawing a straight line through the points. Of course, no straight line passes exactly 

through all the points. Fitting a line to data means drawing a line that comes as close as 

possible to the points. The equation of a line fitted to the data gives a concise description 

of the relationship between the response variable y and the explanatory variable x. It is 

the numerical summary that supports the scatterplot, our graphical summary. 

 

 
 

Prediction 

We can use a regression line to predict the response y for a specific value of the 

explanatory variable x. We can interpret the prediction as the average value of y 

corresponding to a collection of cases at the particular value of x or as our best guess at 

the value of y for an individual with the particular value of x. 

 

Extrapolation is the use of a regression line for prediction far outside the range of values 

of the explanatory variable x used to obtain the line. Such predictions are often not 

accurate and should be avoided. 

 

 

 

LEAST-SQUARES REGRESSION LINE 



The least-squares regression line of y on x is the line that makes the sum of the squares 

of the vertical distances of the data points from the line as small as possible. 

 

 
 

 



 
 

The use of r2 to describe the success of regression in explaining the response y is very 

common. It rests on the fact that there are two sources of variation in the responses y in 

a regression setting. Figure 2.17 gives a rough visual picture of the two sources. The 

first reason for the variation in fat gains is that there is a relationship between fat gain 

y and increase in NEA x. As x increases from −94 to 690 calories among the 16 subjects, 

it pulls fat gain y with it along the regression line in the figure. The linear relationship 

explains this part of the variation in fat gains. 

The fat gains do not lie exactly on the line, however, but are scattered above and 

below it. This is the second source of variation in y, and the regression line tells us 

nothing about how large it is. The dashed lines in Figure 2.17 show a rough average for 

y when we fix a value of x. We use r2 to measure variation along the line as a fraction 

of the total variation in the fat gains. In Figure 2.17, about 61% of the variation in fat 

gains among the 16 subjects is due to the straight-line relationship between y and x. The 

remaining 39% is vertical scatter in the observed responses remaining after the line has 

fixed the predicted responses. 
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2.5 Cautions about Correlation and Regression 

Residuals 

A regression line describes the overall pattern of a linear relationship between an 

explanatory variable and a response variable. Deviations from the overall pattern are 

also important. In the regression setting, we see deviations by looking at the scatter of 

the data points about the regression line. The vertical distances from the points to the 

least-squares regression line are as small as possible in the sense that they have the 

smallest possible sum of squares. Because they represent “leftover” variation in the 

response after fitting the regression line, these distances are called residuals. 

 

 
 

 



Because the residuals show how far the data fall from our regression line, examining 

the residuals helps us assess how well the line describes the data. Although residuals 

can be calculated from any model fit to the data, the residuals from the least-squares 

line have a special property: the mean of the least-squares residuals is always zero. 

 

 
 

Because the mean of the residuals is always zero, the horizontal line at zero in Figure 

2.23(b) helps orient us. This line (residual = 0) corresponds to the fitted line in Figure 

2.23(a). The residual plot magnifies the deviations from the line to make patterns easier 

to see. If the regression line catches the overall pattern of the data, there should be no 

pattern in the residuals. That is, the residual plot should show an unstructured horizontal 

band centered at zero. The residuals in Figure 2.23(b) do have this irregular scatter. 

You can see the same thing in the scatterplot of Figure 2.23(a) and the residual plot of 

Figure 2.23(b). It’s just a bit easier in the residual plot. Deviations from an irregular 

horizontal pattern point out ways in which the regression line fails to catch the overall 

pattern.  

 
 

 

 

 

 

 

 

 

 



Patterns in birthrate and Internet user residuals. In this scatterplot, Figure 2.13, we see 

that there are many countries with low numbers of Internet users. In addition, the 

relationship between births and Internet users appears to be curved. For low values of 

Internet users, there is a clear relationship, while for higher values, the curve becomes 

relatively flat. 

 
Figure 2.24(a) gives the data with the least-squares regression line, and Figure 2.24(b) 

plots the residuals. Look at the right part of Figure 2.24(b), where the values of Internet 

users are high. Here we see that the residuals tend to be positive. 

 



The residual pattern in Figure 2.24(b) is characteristic of a simple curved relationship. 

There are many ways in which a relationship can deviate from a linear pattern. We now 

have an important tool for examining these deviations. Use it frequently and carefully 

when you study relationships. 

 

Outliers and influential observations 

When you look at scatterplots and residual plots, look for striking individual points as 

well as for an overall pattern. Here is an example of data that contain some unusual 

cases. 

 
 



 

Beware of the lurking variable 

Correlation and regression are powerful tools for measuring the association between 

two variables and for expressing the dependence of one variable on the other. These 

tools must be used with an awareness of their limitations. We have seen that 

• Correlation measures only linear association, and fitting a straight line makes 

sense only when the overall pattern of the relationship is linear. Always plot your data 

before calculating. 

• Extrapolation (using a fitted model far outside the range of the data that we 

used to fit it) often produces unreliable predictions. 

• Correlation and least-squares regression are not resistant. Always plot your 

data and look for potentially influential points. 

Another caution is even more important: the relationship between two variables can 

often be understood only by taking other variables into account. Lurking variables can 

make a correlation or regression misleading. 

 

LURKING VARIABLE 

A lurking variable is a variable that is not among the explanatory or response variables 

in a study and yet may influence the interpretation of relationships among those 

variables. 

 

Correlations that are due to lurking variables are sometimes called “nonsense 

correlations.” The correlation is real. What is nonsense is the suggestion that the 

variables are directly related so that changing one of the variables causes changes in 

the other. The question of causation is important enough to merit separate treatment in 

Section 2.7. For now, just remember that an association between two variables x and y 

can reflect many types of relationships among x, y, and one or more lurking variables. 

 

ASSOCIATION DOES NOT IMPLY CAUSATION 

An association between an explanatory variable x and a response variable y, even if it 

is very strong, is not by itself good evidence that changes in x actually cause changes 

in y. 

 

Beware of correlations based on averaged data 

Regression or correlation studies sometimes work with averages or other measures that 

combine information from many individuals. For example, if we plot the average height 

of young children against their age in months, we will see a very strong positive 
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association with correlation near 1. But individual children of the same age vary a great 

deal in height. A plot of height against age for individual children will show much more 

scatter and lower correlation than the plot of average height against age. 

 

A correlation based on averages over many individuals is usually higher than the 

correlation between the same variables based on data for individuals. This fact reminds 

us again of the importance of noting exactly what variables a statistical study involves. 

 

SECTION 2.5 SUMMARY 

• You can examine the fit of a regression line by plotting the residuals, which are 

the differences between the observed and predicted values of y. Be on the 

lookout for points with unusually large residuals and also for nonlinear patterns 

and uneven variation about the line. 

• Also look for influential observations, individual points that substantially 

change the regression line. Influential observations are often outliers in the x 

direction, but they need not have large residuals. 

• Correlation and regression must be interpreted with caution. Plot the data to be 

sure that the relationship is roughly linear and to detect outliers and influential 

observations. 

• Lurking variables may explain the relationship between the explanatory and 

response variables. Correlation and regression can be misleading if you ignore 

important lurking variables. 

• We cannot conclude that there is a cause-and-effect relationship between two 

variables just because they are strongly associated. High correlation does not 

imply causation. 

• A correlation based on averages is usually higher than if we used data for 

individuals. 

 

SECTION 2.6 SUMMARY 

• A two-way table of counts organizes data about two categorical variables. 

Values of the row variable label the rows that run across the table, and values 

of the column variable label the columns that run down the table. Two-way 

tables are often used to summarize large amounts of data by grouping outcomes 

into categories. 

• The joint distribution of the row and column variables is found by dividing the 

count in each cell by the total number of observations. 

• The row totals and column totals in a two-way table give the marginal 

distributions of the two variables separately. It is clearer to present these 

distributions as percents of the table total. Marginal distributions do not give 

any information about the relationship between the variables. 

• To find the conditional distribution of the row variable for one specific value of 

the column variable, look only at that one column in the table. Find each entry 

in the column as a percent of the column total. 



• There is a conditional distribution of the row variable for each column in the 

table. Comparing these conditional distributions is one way to describe the 

association between the row and the column variables. It is particularly useful 

when the column variable is the explanatory variable. When the row variable is 

explanatory, find the conditional distribution of the column variable for each 

row and compare these distributions. 

• Bar graphs are a flexible means of presenting categorical data. There is no single 

best way to describe an association between two categorical variables. 

• We present data on three categorical variables in a three-way table, printed as 

separate two-way tables for each level of the third variable. A comparison 

between two variables that holds for each level of a third variable can be 

changed or even reversed when the data are aggregated by summing over all 

levels of the third variable. Simpson’s paradox refers to the reversal of a 

comparison by aggregation. It is an example of the potential effect of lurking 

variables on an observed association. 

 

SECTION 2.7 SUMMARY 

• Some observed associations between two variables are due to a cause-and-

effect relationship between these variables, but others are explained by lurking 

variables. 

• The effect of lurking variables can operate through common response if 

changes in both the explanatory and the response variables are caused by changes in 

lurking variables. Confounding of two variables (either explanatory or lurking 

variables or both) means that we cannot distinguish their effects on the response 

variable. 

• Establishing that an association is due to causation is best accomplished by 

conducting an experiment that changes the explanatory variable while controlling 

other influences on the response. 

• In the absence of experimental evidence, be cautious in accepting claims of 

causation. Good evidence of causation requires (1) a strong association, (2) that 

appears consistently in many studies, (3) that has higher doses associated with 

stronger responses, (4) with the alleged cause preceding the effect in time, and (5) that 

is plausible. 

 


