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Topics

Why are metrics important?
Binary classifiers
o Rank view, Thresholding
e Metrics

o Confusion Matrix

o Point metrics: Accuracy, Precision, Recall / Sensitivity, Specificity, F-score
o Summary metrics: AU-ROC, AU-PRC, Log-loss.

Choosing Metrics
Class Imbalance
o Failure scenarios for each metric
e Multi-class



Why are metrics important?

- Training objective (cost function) is only a proxy for real world objectives.
- Metrics help capture a business goal into a quantitative target (not all errors
are equal).

- Helps organize ML team effort towards that target.
- Generally in the form of improving that metric on the dev set.

- Useful to quantify the “gap” between:

- Desired performance and baseline (estimate effort initially).
- Desired performance and current performance.
- Measure progress over time.

- Useful for lower level tasks and debugging (e.g. diagnosing bias vs variance).
- ldeally training objective should be the metric, but not always possible. Still,
metrics are useful and important for evaluation.



Binary Classification

X is input

y is binary output (0/1)
Model is y = h(x)

Two types of models

o Models that output a categorical class directly (K-nearest neighbor, Decision tree)
o Models that output a real valued score (SVM, Logistic Regression)

m Score could be margin (SVM), probability (LR, NN)

m Need to pick a threshold

m  We focus on this type (the other type can be interpreted as an instance)



Score based models

Score =1

Score =0

®  Positive example

O | Negative example

Example of Score: Output of logistic regression.
For most metrics: Only ranking matters.
If too many examples: Plot class-wise histogram.

# positive examples
Prevalence =

# positive examples +
# negatives examples



Threshold -> Classifier -> Point Metrics
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Predict Positive
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Point metrics: Confusion Matrix

Predict Negative
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o - Total sum is fixed (population).
o - Column sums are fixed (class-wise population).
= - Quality of model & threshold decide how columns
1 ol° 8 are split into rows.
o - We want diagonals to be “heavy”, off diagonals to

be “light”.



Predict Positive

Th=0.5

Point metrics: True Positives
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Point metrics: True Negatives
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Predict Positive

Th=0.5

Point metrics: False Positives
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Point metrics: False Negatives
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FP and FN also called Type-1 and Type-2 errors

Type I error Type II error
(false positive) (false negative)
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Point metrics: Accuracy
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Predict Positive

Th=0.5

Point metrics: Precision
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Predict Positive

Th=0.5

Point metrics: Positive Recall (Sensitivity)

Label positive

Label negative
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Trivial 100% recall = pull everybody above the threshold.
Trivial 100% precision = push everybody below the
threshold except 1 green on top.

(Hopefully no gray above it!)

Striving for good precision with 100% recall =

pulling up the lowest green as high as possible in the ranking.
Striving for good recall with 100% precision =

pushing down the top gray as low as possible in the ranking.



Point metrics: Negative Recall (Specificity)
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Point metrics: F1-score

Label positive Label negative
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Point metrics: Changing threshold

Label positive Label negative
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# effective thresholds = # examples + 1



Threshold Scanning

Threshold = 1.00

Threshold = 0.00

Score =1
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Summary metrics: Rotated ROC (Sen vs. Spec)

Score =1

Specificity
= True Neg / Neg

Score =0

Pos examples Receiver operating characteristic
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AUROC = Area Under ROC

= Prob[Random Pos ranked
higher than random Neg]

Agnostic to prevalence!

Sensitivity = True Pos / Pos



Summary metrics: PRC (Recall vs. Precision)

Pos examples Precision-Recall curve
Score = 1
1.0 1
Neg|examples AUPRC = Area Under PRC
Precision 0.8 - ~ Area Under

= True Pos /

Predicted Pos = Expected precision for

0.6
S Random threshold
Q.
0.4
When threshold = 0:
0.2 Precision = prevalence
Score =0 Average Precision / AUPRC = 0.81
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Recall = Sensitivity = True Pos / Pos



Summary metrics:

Score =1 Score =1

Model A Model B

Score =0 Score =0

Two models scoring the same data set. Is one of them better than the other?



Summary metrics: Log-Loss vs Brier Score

e Same ranking, and therefore the same AUROC,
AUPRC, accuracy!

N N A
Log Loss = 7 Y=y —yilog §i — (1 — y;) log (1 — yi)
e Rewards confident correct answers, heavily
penalizes confident wrong answers.
e One perfectly confident wrong prediction is fatal.
-> Well-calibrated model

e Proper scoring rule: Minimized at =y

Brier Score = vazl (5 — yi)*

Score =1

Score =0

Score =1

Score =0



Calibration vs Discriminative Power

Logistic (th=0.5):
Precision: 0.872
Recall: 0.851
F1:0.862
Brier: 0.099

SVC (th=0.5):
Precision: 0.872
Recall: 0.852
F1:0.862
Brier: 0.163

Calibration plots (reliability curve)
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Unsupervised Learning

e Log P(x)is a measure of fit in Probabilistic models (GMM, Factor Analysis)

o High log P(x) on training set, but low log P(x) on test set is a measure of overfitting

o Raw value of log P(x) hard to interpret in isolation

e K-means is trickier (because of fixed covariance assumption)



Class Imbalance

Symptom: Prevalence < 5% (no strict definition)
Metrics: May not be meaningful.
Learning: May not focus on minority class examples at all

(majority class can overwhelm logistic regression, to a lesser extent SVM)



What happen to the metrics under class imbalance?

Accuracy: Blindly predicts majority class -> prevalence is the baseline.
Log-Loss: Majority class can dominate the loss.

AUROQOC: Easy to keep AUC high by scoring most negatives very low.
AUPRC: Somewhat more robust than AUROC. But other challenges.

In general:  Accuracy < AUROC <AUPRC



Score =1

1% “Fraudulent”
1% Specificity

= True Neg / Neg

98%

Score =0

Rotated ROC

AUC =98/99

Sensitivity = True Pos / Pos



Multi-class

Confusion matrix will be N * N (still want heavy diagonals, light off-diagonals)
Most metrics (except accuracy) generally analyzed as multiple 1-vs-many
Multiclass variants of AUROC and AUPRC (micro vs macro averaging)
Class imbalance is common (both in absolute and relative sense)

Cost sensitive learning techniques (also helps in binary Imbalance)

o Assign weights for each block in the confusion matrix.
o Incorporate weights into the loss function.



Choosing Metrics

Some common patterns:

High precision is hard constraint, do best recall (search engine results,
grammar correction): Intolerant to FP

Metric: Recall at Precision = XX %
- High recall is hard constraint, do best precision (medical diagnosis): Intolerant
to FN

Metric: Precision at Recall = 100 %

- Capacity constrained (by K)

Metric: Precision in top-K.



Thank Youl!



