
CS229
Decision Trees

May 14, 2021



Decision Trees: nonlinear classifier



Decision Trees: canonical situation

● No linear separation line
● Want to divide input space into “regions”
● Can do this by dividing input space into disjoint regions Ri



Recursively splitting regions

● Parent region Rp

● “Children” regions R1 and R2

● Split on feature Xj









How ‘good’ is a split?

● Need to define a loss function L on a region
● Loss of the parent region L(Rp) must be higher than that of child 

regions R1 and R2

● When deciding which attribute to split on, pick the one which 
maximizes the ‘gain’ in the loss
○ Greedy splitting



Why greedy splitting?

● Checking every possible way of splitting every single feature in every 
possible order is computationally intractable!

● Greedy splitting is much easier: just compute the loss for each feature 
you want to consider splitting on



Entropy loss

● Looks like the cross-entropy loss that you have seen before
●    is the prevalence of class c in region R
● Lcross(R) = 0 if all the data in region R belongs to a single class



Entropy loss

● Note that the entropy loss is convex
● Can be shown that, under reasonable conditions, weighted average of 

children’s loss is always less than parent’s loss



Common alternative: Gini impurity

● Closely related to entropy loss
● Default splitting loss for many ML libraries like scikit-learn



What about regression?

● Same growth process, but final prediction is now the mean of all 
datapoints in region:

● Use least-squares loss to split:



Regularization

● Decision trees are highly prone to overfitting! High variance, low bias
● Minimum leaf size

○ Do not split R if its cardinality falls below a fixed threshold

● Maximum depth
○ Do not split R if more than a fixed threshold of splits were already taken to 

reach R

● Maximum number of nodes
○ Stop if a tree has more than a fixed threshold of leaf nodes



Runtime Complexity

● n examples, f features and a tree of depth d
● Test time complexity: O(d)

○ If balanced tree, O(d)=O(log n)

● Train time complexity: O(nfd)
○ Relatively fast since data matrix size is O(nf)



Decision trees lack “additive” structure



Random Forests

● Decision trees are prone to overfitting, so use a randomized ensemble 
of decision trees
○ Typically works a lot better than a single tree

● Each tree can use feature and sample bagging
○ Randomly select a subset of the data to grow tree
○ Randomly select a set of features
○ Decreases the correlation between different trees in the forest



Live Demo!



A few words about boosting...

● Iteratively add simple “weak” classifiers to improve classification 
performance

● After adding weak classifier, evaluate performance and reweight 
training samples

● Weak classifier can be decision tree of depth 1 (decision stump)
● Theoretically, can achieve zero training loss!
● Python libraries: LightGBM, XGBoost
● More in the boosting pdf notes!



Thank you


