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Overview

e Motivation for deep learning

e Convolutional neural networks
e Recurrent neural networks

e Transformers

e Deep learning tools



But we learned multi-layer perceptron in class?

Expensive to learn. Will not generalize well.

Does not exploit the order and local relations in the data!
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What are areas of deep learning?
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Starting from CNN
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Let us look at images in detall
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Filters in traditional Computer Vision
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Image credit:
https://home.ttic.edu/~rurtasun/courses/CV/lecture02.pdf



Learning filters in CNN

Why not extract features using filters?

Better, why not let the data dictate
what filters to use?

Learnable filters!!
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Convolution on multiple channels

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
Images are generally RGB !! * 3’? T ‘] 1
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Parameter Sharing

Lesser the parameters less computationally intensive the training. This is a
win win as we are reusing parameters.



Translational invariance

Since we are training filters to TRAUSLATION RUARIANCE >
detect cats and the moving
these filters over the data, a §
differently positioned cat will h h
also get detected by the same h ”’ m
set of filters. S U SO
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Visualizing learned filters

Images that maximize filter outputs at certain  How deeper layers can learn deeper
layers. We observe that the images get more  embeddings. How an eye is made up of multiple
complex as filters are situated deeper curves and a face is made up of two eyes.



A typical CNN structure:
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Image credit: LeCun et al. (1998)



Convolution really is just a linear operation

In fact convolution is a giant matrix

multiplication. rl k2 0 k3 k4 0 0 0 0

0 k1 k2 0 k3 k4 0 0 O

- : 0 0 0 kl k2 0 k3 k4 0 |

We car_1 expand the 2 dimensional 0 0 0 0 klk2 0 k3 ka4
image into a vector and the conv
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SOTA Example — Detectron2




How do we learn?

Instead of € =60 + « ( @) —
They are “optimizers”

Momentum: Gradient + Momentum
Nestrov: Momentum + Gradients
Adagrad: Normalize with sum of sq
RMSprop: Normalize with moving
avg of sum of squares

ADAM: RMsprop + momentum

h (fr(*})) ()
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SGD
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Mini-batch Gradient Descent

Expensive to compute gradient for large dataset

Memory size

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent

Compute time
Mini-batch: takes a sample of training data

How to we sample intelligently?



|s deeper better?

Deeper networks seem to be 24x224%3 24x224x64
more powerful but harder to train.

112|112 %1258

e Loss of information during
forward propagation

e Loss of gradient info during
back propagation
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There are many ways to “keep
the gradient going”

1] softmax




One Solution: skip connection

Connect the layers, create a gradient highway or information

highway. ~--
X ~~~~~~~~
Y T
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ResNet (2015)

Image credit: He et al. (2015)




Initialization

Can we Iinitialize all neurons to zero? Relu units once knocked out and their
output is zero, their gradient flow also

If all the weights are same we will not becomes zero.

be able to break symmetry of the

network and all filters will end up We need small random numbers at
learning the same thing. initialization.

Large numbers, might knock relu units Variance : 1/sqrt(n)

out. Mean: O

Popular initialization setups

(Xavier, Kaiming) (Uniform, Normal)]
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What does cutting off some network

connections do?
Can drop entire layer too!

Dropout

(b) After applying dropout.

(a) Standard Neural Net

Acts like a really good regularizer



More tricks for training

Data augmentation if your data set is
smaller. This helps the network
generalize more.

Early stopping if training loss goes
above validation loss.

Random hyperparameter search or grid
search?
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CNN sounds like fun!
What are some other areas of deep learning?

-

Recurrent NN
Sequential data

nnnnnnnnnn

Convolutional NN




We can also have 1D architectures (remember this)
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To address sequential dependency?

Use recurrent neural network (RNN) Unrolling an RNN
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The RNN Cell (Composed of Wxh and Whh in this example) is really the same cell.
NOT many different cells like the filters of CNN.



How does RNN produce result?

Evolving “embedding”

N
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2 Typical RNN Cells

Store in “long term memory” Response to current input Reset gate Update gate
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Long Short Term Memory (LSTM) Gated Recurrent Unit (GRU)



Recurrent AND deep?

Taking last value

| concat I | concat I

+——LSTM «— LSTM < — LSTM +—LSTM = —
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Transformer — Attention is All You Need!

Originally proposed for translation.

Decoding time step: 1@3 456 OUTPUT |
Encoder computes hidden
) ¢ . representations for each word in
o e mmm e Ve (___Uinear+Softmax ) the input sentence
e Applies self attention.
ENCODERS DECODERS
Decoder makes sequential
\ J .. .. .
T N N prediction similar as in RNN
WITH TIME . . .
SIGNAL At each time step, it predicts the
EvBEDDINGS NN (NN [ [ next word based on its previous

predictions (partial sentence).
Applies self attention and
attention on encoder outputs.

e suis  étudiant PREVIOUS
e . OUTPUTS



Transformer — Attention is All You Need!

Multi-Head Attention
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Attention(Q, K, V) = softmax

The dot product in softmax below computes
how each word of sequence 1 (Q) is
influenced by all the other words in the
sequence 2 (K).

Considering the different importance, we
computed a weighted sum of the information
in the sequence 2 (V) to use in computing the
hidden representation of sequence 1.
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Transformer — Attention is All You Need!

Multi-Head Attention
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Transformer — Attention is All You Need!

Multi-Head Attention
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Multiple heads!
-- Similar as how you have multiple filters in CNN

Loss of sequential order?
-- Positional encoding! (often use sine waves)
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SOTA Example — GPT3

A "whatpu" is a small, furry animal native to Tanzania. An example of a sentence that uses
the word whatpu is:
We were traveling in Africa and we saw these very cute whatpus.

To do a "farduddle" means to jump up and down really fast. An example of a sentence that uses
the word farduddle is:

One day when I was playing tag with my little sister, she got really excited and she
started doing these crazy farduddles.

A "yalubalu" is a type of vegetable that looks like a big pumpkin. An example of a sentence
that uses the word yalubalu is:

I was on a trip to Africa and I tried this yalubalu vegetable that was grown in a garden
there. It was delicious.

A "Burringo" is a car with very fast acceleration. An example of a sentence that uses the
word Burringo is:
In our garage we have a Burringo that my father drives to work every day.

A "Gigamuru" is a type of Japanese musical instrument. An example of a sentence that uses the
word Gigamuru is:
I have a Gigamuru that my uncle gave me as a gift. I love to play it at home.

To "screeg" something is to swing a sword at it. An example of a sentence that uses the word
screeg is:
We screeghed at each other for several minutes and then we went outside and ate ice cream.




SOTA Example — GPT3

Describe a layout.

Just describe any layout you want, and it'll try to render below!

a button that looks like a watermelon

<button style={{backgroundColor: 'pink', border: '2px solid green', borderRadius:
"50%', padding: 20, width: 100, height: 100}}>Watermelon</button>

Watermelon

a button for every color of the rainbow

<div style={{backgroundColor: 'red', padding: 20}}>Red</div><div style=

{{backgroundColor:

I IharkaronnACalare

'orange', padding: 20)}>Orange</div><div style=
‘vallaw' mnaddinas 20013Vallauwe /divscdiv etvles

Orange

Yellow




SOTA Example — DALLE

TEXT PROMPT

an illustration of a baby daikon radish in a tutu walking a dog

AI-GENERATED IMAGES

- i 4

Edit prompt or view more images +

TEXT PROMPT

an armchair in the shape of an avocado [...]

AR K

Edit prompt or view more images +

AI-GENERATED IMAGES

TEXT PROMPT
a store front that has the word ‘openai’ written oniit[...]

AI-GENERATED IMAGES

Edit prompt or view more images v



More? Take CS230, CS236, CS231N, CS224N
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Not today, but take CS234 and CS224W
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Tools for deep learning Specialized
p &)

Groups
/ 4 Keras \ L2

Tensor
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$50 not enough! Where can | get free stuff?

Google Colab

Free (limited-ish) GPU access

Azure Notebook

> Kaggle kernel???

Works nicely with Tensorflow
Links to Google Drive
Register a new Google Cloud account
=> |nstant $30077?
=> AWS free tier (limited compute)

=> Azure education account, $2007?

Amazon SageMaker?

To SAVE money

C L OS E your GPU instance
~$1 an hour



Good luck!
Well, have fun too :D




